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Abstract

Software has become ubiquitous in both industry and elsewhere. Sadly, there are many
examples of software bugs disrupting daily life at a large scale, such as the 2014 Heart-
bleed vulnerability, or the global Crowdstrike outage in 2024. Therefore, ensuring cor-
rectness of these software systems is crucial.

This is, however, hard. In a single-threaded setting, memory safety and functional cor-
rectness are difficult to verify. In a concurrent software environment, robust software
design becomes even more challenging. Here, execution is interleaved between threads,
causing some bugs to only be triggered in specific interleavings. This makes correct
software much more difficult to write.

One way of ensuring correctness of concurrent software is through formal methods. For-
mal methods can check if a program follows a mathematical specification. Automated
tools that implement these techniques create an opportunity for users to prove correct-
ness of their software at unprecedented scale. This thesis focuses on the auto-active de-
ductive verifier VerCors, which verifies concurrent programs with contracts for memory
safety and functional correctness.

Even though there have been successful applications of formal methods to industrial
systems, uptake is still limited. We found this is partly because of a gap between the
mental models of engineers and the abstractions offered by formal methods. We improve
the situation by combining, and extending capabilities of, formal methods with different
workflows and levels of abstraction. These hybrid formal methods have the potential to
narrow the gap between practical software development and verification with formal
methods. We explore this theme in three parts.

The first part of this thesis investigates the possible reasons for the lack of adoption of
one particular formal method: auto-active deductive verification. We apply the VerCors
deductive verifier to an industrial code base of the Technolution company, finding two
bugs. We conclude tool support still needs to be further improved, and that it is hard to
connect mental models of developers to the abstraction level required for verification
annotations.

In the second part of the thesis, we try to narrow the gap between mental models
and formal methods by combining two verification tools: VerCors and the component-
based software development framework JavaBIP. The key feature of JavaBIP is that it
separates the implementation of components in Java from the interaction between com-
ponents. We call this combination Verified JavaBIP, which verifies implementations of
JavaBIP models for memory safety and functional correctness. We implement support
for Verified JavaBIP in VerCors, and also implement run-time verification support in



JavaBIP. We illustrate Verified JavaBIP on the VerifyThis Long Term Verification Chal-
lenge.

In the third part of this thesis, we consider choreographies and deductive verification.
Choreographies are a constrained language for describing protocols and distributed sys-
tems. In choreographies, messages are always well-typed, and endpoints never have to
wait infinitely for messages. Choreographies also support code generation. To verify
choreographies, VeyMont was introduced, allowing verification of all endpoints in one
combined context. In this thesis, we make VeyMont more broadly applicable by extend-
ing it with shared memory and parameterization.

VeyMont initially did not support shared memory. This limited expressiveness of the
choreographies, and made it impossible to use shared ghost state to prove correctness.
We enable use of shared memory by adding stratified permissions to VeyMont, which is
a new type of annotation that assigns memory annotations to endpoints. VeyMont also
uses stratified permissions to preserve verification annotations during code generation,
making generated code verifiable with VerCors, increasing robustness and maintainabil-
ity. We verify a Tic-Tac-Toe choreography with three levels of optimization, demonstrat-
ing a trade-off between the volume of annotations required to verify the choreography
and its run-time performance.

We also extend VeyMont choreographies with parameterization. Before, choreographies
required the user to specify the number of endpoints upfront. This made it difficult to
express distributed systems in VeyMont that naturally scale. We extend VeyMont to
support choreographies with a parameterized number of endpoints. We impose modest
restrictions on the syntax of choreographies to retain automation, and illustrate the ex-
tension by verifying a distributed summation choreography. This shows that despite the
limitations imposed, the proposed support is sufficient to verify interesting choreogra-
phies.

To conclude, this thesis investigates the gap between formal methods and software en-
gineering in industry. We do this by using a deductive verifier in an industrial setting,
and determining what is missing in the state of the art. Moreover, we combine formal
methods with different workflows and abstractions, as well as extend such hybrid for-
mal methods, to further narrow the gap between formal methods and software design.
This brings formal methods closer to industry, and hence will improve the reliability of
software systems in the long term.
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Introduction

1.1 Software Errors

In our daily world, to say that software is ubiquitous is an
understatement.

From the logic that flies air planes to smart jewellery, soft-
ware is involved in some way. While this yields many ben-
efits, it is in fact a double-edged sword: whenever the be-
haviour of software is different from what was intended,
things can go wrong.

Looking back in history, it is not difficult to find exam-
ples of software behaving in unexpected ways. One partic-
ularly expensive case is that of the catastrophic test flight
of the Ariane 5 rocket, costing hundreds of millions of dol-
lars [59]. While the cause of this accident can be consid-
ered through many lenses, a salient observation is that the
chain of accidents started with a seemingly simple conver-
sion of a 64-bit floating point number into a 16-bit signed
integer [118].

It is now several decades later. Sadly, there is no evidence
that we have solved any of the problems that have been
plaguing computer scientists since the ’60s. On the 19th of
July, 2024, Crowdstrike distributed an update of their Fal-
con tool to their customers. This update, which changed
the configuration of the tool, was not fully propagated to
every part of the tool [51]. Ultimately, this inconsistency
resulted in an out-of-bounds access, meaning memory was

Contents
1.1 Software Errors . . . 1
1.2 Concurrency . ... 2
1.3 Formal Methods .. 4
1.4 Narrowing the Gap . 10
1.5 Industry . ... ... 11
1.6 Combining Tools . . 13
1.7 Choreographies . . . 14
1.8 Thesis Structure . . 19

[59]: Dowson (1997), The Ariane
5 software failure

[118]: Nuseibeh (1997), Soapbox:
Ariane 5: Who Dunnit?

[51]: CrowdStrike (2024), Exter-
nal Technical Root Cause Analysis
— Channel File 291 (link)
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[42]: Carvalho et al. (2014),
Heartbleed 101

e
e

Figure 1.1: State space of a sys-
tem of 2 components, red and
blue. Each component executes 2
“move down” actions. Each path
from the top left to the bottom
right represents one possible in-
terleaving.

accessed outside its intended range, crashing the host ma-
chine at the kernel level. Many industries were directly af-
fected by this outage.

This is not the first time an out-of-bounds access bug made
the news. In 2014, the bug that made the Heartbleed vul-
nerability possible was discovered [42]. The bug hinged
upon an out-of-bounds access, which effectively allowed
any client to force the server to dump a random portion of
its memory.

These incidents took place in different domains: aerospace,
security, and software engineering. Yet, their fundamental
structure is not so different. They all concern requirements
that are simple when considered in isolation. For example,
properly converting a decimal number to an integer, or
reading an element from a list. These are well understood
operations; they are concepts that software engineers deal
with on a daily basis. Yet, it seems they are easily missed,
and this is not unexpected. In all mentioned cases, there
were likely thousands of lines of code, making bugs hard
to discover by manual inspection.

One could argue that we need automatic tools to check sim-
ple requirements like the ones mentioned before in large
volumes of code. Unfortunately, this would not suffice, as
there is another source of complexity that must be consid-
ered: concurrency.

1.2 Concurrency

In a concurrent system, execution steps of the system sub-
components are interleaved. This introduces the category
of concurrency-related bugs, which only occur in some in-
terleavings of the system, but not in others. Therefore, find-
ing all bugs in a concurrent program requires considering
all interleavings.

The number of interleavings one must consider grows ex-
ponentially, even for simple systems. For example, imagine
a system of two components where each component needs
to execute two actions, such as the state machine in Fig. 1.1.
We draw the system states as black circles. Within the sys-
tem states we draw the states of the two components, a



red component and a blue component, side by side. Each
component can take two actions in sequence: first, move
its own coloured ball from the top to the middle level, and
then move its ball from the middle to the bottom level. One
component taking a step is visualized by an arrow connect-
ing two system states. The initial state is the top-left circle,
marked by an incoming arrow. The bottom right state is
the final one, marked by a double circle. Notice how each
path from the top-left state to the bottom-right state repre-
sents a possible evolution of the system, and hence a pos-
sible interleaving of the execution of the two components.
As there are six possible paths in the figure, the system has
six possible interleavings.

Now consider a similar system with 3 components. This al-
ready increases the number of interleavings to 90. A system
with 5 components, where each component executes 4 ac-
tions, has more interleavings than the number of seconds
in the average human life.

The exponential growth of interleavings can be mind bend-
ing, but the practical nature of concurrency bugs usually is
not. For example, at the Pwn20wn conference in 2023, the
Synacktiv team demoed a hack of the Tesla Model 3 that in-
volved concurrency [63]. In this hack, Synactkiv exploited
a time-of-check to time-of-use (TOCTOU) bug to gain con-
trol over the vehicle.

A TOCTOU bug can occur whenever there is some time be-
tween the checking of a property and the subsequent use
of the property, while there are other processes happen-
ing concurrently. In single-threaded systems, this is not a
problem: as there is only one thread of execution, a prop-
erty remains valid after it is checked, so long as the thread
itself does not invalidate it. However, in a car with multi-
ple simultaneously executing components, a TOCTOU bug
can be problematic. Specifically, during the time delay be-
tween the check and the use of the property, another sys-
tem component might change the shared state, invalidat-
ing the property in the process. Then, when the property
is later used, it does not hold anymore, causing problems
for the primary component.

In the demo by Synacktiv, they exploited the time delay
between checking integrity of a firmware update, and ac-
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[64]: Gleirscher et al. (2023), A
manifesto for applicable formal
methods

1: Such as code review, pair pro-
gramming, ad-hoc testing, and
source code linters.

[64]: Gleirscher et al. (2023), A
manifesto for applicable formal
methods

tually applying the update. Within this time delay, Synack-
tiv managed to replace the firmware update with their own
version. The integrity check is supposed to prevent exactly
such an attack! This goes to show that, in a concurrent envi-
ronment, even something as simple as checking an update
before using it has to be carefully designed.

The problem of bugs seen in practice is usually not the re-
quirements themselves, but the number of requirements
and their pervasiveness. When multiplied with a modest
amount of concurrency, the number of execution scenar-
ios to consider grows far beyond what a human can com-
fortably reason about. Unfortunately, as long as software is
written by humans, bugs will be part of the reality of soft-
ware, because making mistakes is human. If we are to have
any hope for producing software that is free of faults, this
can only be achieved using a structured approach, leaving
no requirement or interleaving to informal oversight. Such
approaches are called formal methods.

1.3 Formal Methods

Formal methods are rigorous methodologies based on strict
techniques that give guarantees, if not in an exhaustive
fashion, then at least strictly delineated [64]. Formal meth-
ods differ from “informal” methods! in their description
and application: a specific formal method prescribes a fi-
nite set of rules, which can be interpreted strictly and leave
no ambiguity. In theory, this means anyone can apply a
formal method correctly by “just” carefully following in-
structions. In practice, applying a formal method can still
be challenging [64].

In this thesis, we consider formal methods for the verifi-
cation of systems. This means we consider methods that
show:

“the system does what you think it should do,
and nothing else” (Ter Beek et al., [20])

This is in contrast to e.g. writing a formal specification of a
system only for documentation purposes, or using synthe-
sis techniques to automatically generate complete finished
implementations based on a specification.



Model Auto-active Interactive
checking verification theorem proving

1.3.1 Automation in Formal Methods

Some formal methods are strict enough to be implemented
as a computer program, allowing a computer to take care
of most of the bookkeeping. E.g. some formal methods are
based on exhaustive searches which are simply too large
to complete by hand. Automating a formal method can not
only lower the usage barrier for a formal method, but also
opens the door to increased rigour and scalability. There
are plenty of examples of formal methods that can be imple-
mented. However, not all formal methods are equally auto-
matic. The degree of automation is actually a spectrum, as
depicted in Fig. 1.2, where some formal methods are more
automatic than others. We discuss three points on this spec-
trum:

» a fully automatic formal method, model checking,

» a manual but computer-assisted formal method, in-
teractive theorem proving, and

» apartially automated formal method, auto-active ver-
ification.

Model checking On the “automation” extreme end of the
spectrum, a well-known example is model checking [20].
Given a model and a property, a model checker computes
if the model satisfies the property. One possible way to do
this is by explicitly computing the state space of the model,
and inspecting in each state if the property indeed holds.
If the state space can be computed automatically (which is
usually the case), checking the model is a completely au-
tomatic process. Consider the example in Fig. 1.1. Given a
model checker for “pictorial” state machines, we could ask
it to check the property “the red ball is always ahead of the
blue ball”. Upon encountering one of the states where this
is not the case, the model checker would terminate, and
print the sequence of transitions that leads to this counter
example state.

1.3 Formal Methods | 5

Figure 1.2: Spectrum of formal
methods, from more to less auto-
mated

[20]: Ter Beek et al. (2025), For-
mal Methods in Industry
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[20]: Ter Beek et al. (2025), For-
mal Methods in Industry

[54]: Czajka et al. (2018), Ham-
mer for Coq: Automation for De-
pendent Type Theory

[94]: Limperg et al. (2023), Aesop:
White-Box Best-First Proof Search
for Lean

[125]: Paulson et al. (2010), Three
years of experience with Sledge-
hammer, a Practical Link Be-
tween Automatic and Interactive
Theorem Provers

2: Of course, there are excep-
tions. For example, Verifast [75]
allows the user to inspect in-
termediate states of verification.
Viper [108] goes even further
and allows the user to query and
manipulate the intermediate ver-
ification state when verification
fails [83]. As these facilities are
intended for debugging, they are
not typically used for large-scale
verification.

Interactive theorem proving An example on the “man-
ual” extreme end of the spectrum are interactive theorem
provers (ITPs) [20]. ITPs can check every intermediate step
of a proof automatically, given that the steps are provided
by the user. For example, an ITP might have the following
lemma in its standard library: “given a list X, if X is sorted
and non-empty, then the first element of X is less than or
equal to the last element of X”. This lemma can be used to
prove that, for any particular list Y, the first element of Y is
less than or equal to the last element, assuming Y is sorted
and non-empty. However, the user will need to instruct the
ITP to apply this particular lemma to this particular list Y.
As the user needs to provide such intermediate steps, in-
teractive theorem provers are not automatic in the general
case. However, research that seeks to automate parts of this
process is currently ongoing and fruitful [54, 94, 125].

Auto-active verification In this thesis, we consider a tech-
nique in the middle of the automation spectrum: auto-active
verification [93]. Auto-active approaches require the user to

provide some guidance in the form of program annotations.
Once these annotations are written, the auto-active verifier

takes over and requires no further intervention from the

user. In a nutshell, auto-active verifiers are automatic, but

also require some interaction upfront. While auto-active

verification sounds similar to using an ITP, there is a subtle

difference: in an ITP the user indicates when a proof should

be finished using automation. In contrast, an auto-active

verifier, which uses the program annotations to guide the

proof, typically? does not allow the user to intervene dur-
ing the actual proving process.

1.3.2 Top-Down vs. Bottom-Up Verification

Another way to categorize formal methods is the direction
in which they verify systems. On this spectrum, the bottom
represents implementations, which can easily be executed,
but are hard to reason about. The top represents abstract
specifications, which might not be executable or lack de-
tails, but which are easier to analyse. The two extremes
on this spectrum are bottom-up and top-down formal meth-
ods.



Bottom-up Inbottom-up formal methods [24], the imple-
mentation is the starting point of the verification effort.
The goal is to show correctness of an implementation w.r.t.
a specification. By first writing the implementation and
adding the specification on top of it, the specification be-
comes a second-class citizen. In other words, bugs found in
the implementation will need to be fixed, and thus might re-
quire changing the implementation, but the basic approach
is that the specification is written to describe the implemen-
tation as-is.

The implementation being the central focus of the verifica-
tion effort is particularly common in the context of verifica-
tion of existing systems, e.g. as done by Hiep et al. in [69].
In this work, the intention was to verify the LinkedList
implementation from the OpenJDK using the KeY verifier [4].
KeY is a good example of a bottom-up verifier: it is a pro-
gram verification tool that requires the user to provide both
a Java program and annotations in the form of specification
comments. KeY can then check if the Java program respects
the given annotations, possibly with interactive guidance
from the user.

The “bottom-up” categorization is not absolute. For exam-
ple, model checkers also fit the description of a bottom-up
formal method. Like any typical bottom-up formal method,
model checkers verify if a given model M satisfies some
property ¢, both to be provided by the user [15]. However,
the idea that the implementation is the central focus of the
verification effort is less clear. For example, model check-
ers such as mCRL2 [39] or NuSMV [46] accept implemen-
tations in the form of an abstract state machine. While ab-
stract state machines can be considered executable, in prac-
tice they are often abstractions of software, or maybe even
of physical systems. In this way, as both the model and the
property to be satisfied are partial descriptions of a system,
it is not clear which one needs to change when a property
¢ does not hold for model M. This makes it less clear that
model checkers are a bottom-up formal method. However,
as model checkers require both the model and the property
to be provided by the user, we categorize them as bottom-

up.

Bottom-up formal methods are also referred to as a pos-
teriori [20] formal methods, or post-hoc verification [156].
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tive Software Verification - The
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[15]: Baier et al. (2008), Principles
of model checking

[39]: Bunte et al. (2019), The
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[92]: Lathouwers et al. (2022),
Modelling program verification
tools for software engineers

3: https://slebok.github.
io/proverb/key.html

[141]: Runge et al. (2019), Tool
Support  for  Correctness-by-
Construction

[2]: Abrial (2010), Modeling in
Event-B - System and Software
Engineering

More broadly, bottom-up verification can also be viewed
through the lens of the megamodel of program verification
tools, as introduced by Lathouwers and Zaytsev [92]. This
megamodel defines a hierarchy, with levels PV0 to PV6,
where each level contains tools that reach some degree of
conceptual complexity. For example, PVO0 contains all mod-
elling frameworks that do not have some kind of checker or
verifier, PV1 is the category of tools that can check models
based on direct syntactic analysis (so-called linters), and so
on. At the top of the hierarchy is PV6, which is the category
of proof assistants.

In the megamodel, bottom-up tools typically reside in the
PV3 level. The distinction between bottom-up and PV3 is
that we consider bottom-up tools to be implementation-
centric, whereas tools in the PV3 level only need to 1. sup-
port annotating inputs with properties, and 2. be conceptu-
ally decomposable into a specification provider and a ver-
ifier. A counterexample of a bottom-up tool that is not in
PV3 is KeY. This is because KeY is typically used interac-
tively, which causes it to be located in PVe.3

Top-down On the other end of the spectrum there are
top-down formal methods, where the abstract specification
is the ground truth. Through successive derivation steps a
conforming implementation is derived. How many deriva-
tion steps take place, and what each step entails, depends
on the specific instance of top-down method.

For example, in the CorC tool [141], the initial specification
is a pre- and postcondition that the program should satisfy.
Here, a precondition is a condition that may be assumed
to hold before the program is executed. The postcondition
is a condition that should hold when the program finished.
Then, CorC provides support to iteratively construct an im-
perative program S. Each step refines S and maintains the
relation that given the precondition, after executing S, the
postcondition holds. For example, when the precondition
implies the postcondition, CorC allows replacing S with the
skip statement [141].

Another example of a top-down formal method is Event-
B [2], where the initial specification is an abstract machine
with local state and transitions that modify local state. Here,


https://slebok.github.io/proverb/key.html
https://slebok.github.io/proverb/key.html

a refinement step consists of defining a more concrete ma-
chine, and then showing that the concrete machine does
not contradict the abstract machine. Refinement steps can
be applied until the model is so concrete such that imple-
mentation is trivial.

Top-down formal methods are also referred to as a priori
verification [20], program derivation [58, 81] or correct-by-
construction [86]. In the megamodel of program verifica-
tion tools, top-down formal methods that only generate
an implementation reside in the PV2 level, which is the
level for synthesis tools. Top-down formal methods that
also generate checkable specifications belong to a higher
level.* This means the category of top-down formal meth-
ods is larger than just the PV2 level.

Implementation gap When a top-down formal method
produces a final certified implementation, this does not nec-
essarily mean that the job of the user is done. Some top-
down formal methods create implementations that are not
directly usable for execution, e.g. the implementation gen-
erated could be in a non-executable language. Another rea-
son could be that the implementation still contains dummy
implementations that the user is expected to fill in them-
selves. In both of these cases, manual unchecked implemen-
tation is necessary to get a fully functioning implementa-
tion.

In the context of model checking, where the models of-
ten informally represent a physical system, this is a well-
known problem ([119], p. 298). In essence, it is challenging
to check if a model represents the relevant behaviour of
some other, possibly physical, system. O’Regan does not
explicitly name the problem, but for the sake of clarity we
refer to it as the implementation gap. Previous work calls
this the abstraction problem (Oortwijn, [122], p. 12).

Generally, top-down formal methods intended for architec-
tural design suffer from this shortcoming. For example, ini-
tially the Event-B toolset only generated skeleton imple-
mentations that, in combination with a suitable runtime,
would faithfully execute the model. However, these skele-
ton implementations would still have empty stubs in places
of primitive actions, meaning they were not executable yet.
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[129]: Rivera et al. (2017), Code
generation for Event-B

[88]: Lammich (2019), Gener-
ating Verified LLVM from Is-
abelle/HOL

Later work by Rivera et al. resolved this by generating ver-
ifiable Java code, closing the implementation gap [129].

Other top-down formal methods derive an implementation
all the way to an executable level. For example, Lammich
et al. implement refinement from a functional language to
a subset of LLVM [88]. Because the final implementation
in LLVM is executable, the implementation gap is avoided.
Similarly, the CorC tool refines down to Java code that can
be automatically verified with KeY, as CorC also provides
the necessary proof steps [141].

Bottom-up formal methods are less susceptible to an imple-
mentation gap, as they usually analyze an implementation
directly. Consider the Java verifier KeY, which verifies Java
programs. In this case, verification results apply directly to
the given implementations. In contrast, model checkers are
a counterexample. This is because model checkers often
analyse abstract models, such as labelled state machines or
finite-state machines, that are intended to describe some
concrete physical system. Here, there is an implicit assump-
tion that the physical system is accurately described by the
abstract model. In those cases, model checkers risk falling
into the implementation gap.

Interestingly, because some bottom-up formal methods do
not have an implementation gap, this makes them one of
the ways that top-down formal methods can use to ensure
the final implementation is and remains correct. As men-
tioned earlier, this is what as is done for Event-B and CorC.
Essentially, if top-down formal methods generate the right
annotations in the final implementation, integrating bottom-
up formal methods is possible.

1.4 Narrowing the Gap

While formal methods research and innovation is ongoing,
their usage in practice is limited. This shows that there is a
gap between industrial application and theoretical design
of formal methods. Therefore, in this thesis, we investigate
the following research question:
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How to narrow the gap between mental
models and formal methods?

One step towards narrowing the gap between mental mod-
els and software has already been made in the form of soft-
ware diagrams. Examples of such diagram frameworks are
UML and SysML [62, 140]. Developers use the diagrams
from these frameworks, such as class diagrams, activity di-
agrams, and other kinds of augmented stated machines, to
make the mental models of the software they are develop-
ing concrete. While these diagrams are widespread in in-
dustry, there is no standard formal method that takes these
diagrams as a starting point.

Therefore, we present one possible answer to the research
question, formulated by considering and combining top-
down and bottom-up formal methods into new hybrid for-
mal methods. We believe that hybrid formal methods have
the power to contribute to the design phase, the verifica-
tion phase and the maintenance phase of software.

In particular, we will consider the following formal meth-
ods:

» VerCors [13], a verifier for concurrent programs, in-
troduced in Section 1.5,

» JavaBIP [30], a component-based software develop-
ment framework, introduced in Section 1.6, and

» VeyMont [36], a VerCors-based verifier for choreogra-
phies, introduced in Section 1.7.

In the next sections we will introduce the core technical
chapters of this thesis in order of appearance, followed by
an outline of the contributions of this thesis.

1.5 Formal Methods in Industry

It is clear that formal methods can contribute substantially
to the reliability of software. Indeed, there are several suc-
cess stories of formal methods in industry already.” The
Infer static analysis tool is integrated in the software devel-
opment pipeline of Facebook [40]. At Amazon, TLA* [89]

[62]: Friedenthal et al. (2015), A
Practical Guide to SysML

[140]: Rumpe (2016), Modeling
with UML

[13]: Armborst et al. (2024), The
VerCors Verifier: A Progress Re-
port

[30]: Bliudze et al. (2017), Exoge-
nous coordination of concurrent
software components with Jav-
aBIP

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

5: For a recent and comprehen-
sive overview, see Ter Beek et
al. [20].

[40]: Calcagno et al. (2015), Mov-
ing Fast with Software Verifica-
tion

[89]: Lamport (2002), Specifying
Systems, The TLA+ Language and
Tools for Hardware and Software
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[68]: Hawblitzel et al. (2015),
IronFleet: proving practical dis-
tributed systems correct

[97]: Lorch et al. (2020), Ar-
mada: low-effort verification of
high-performance concurrent pro-
grams

[64]: Gleirscher et al. (2023), A
manifesto for applicable formal
methods

[152]: The White House (2024),
Back to the Building Blocks: A
Path Toward Secure and Measur-
able Software

[13]: Armborst et al. (2024), The
VerCors Verifier: A Progress Re-
port

[66]: Haack et al. (2015),
Permission-Based Separation
Logic for Multithreaded Java
Programs

is routinely used for verification projects [111]. The Iron-
clad project at Microsoft has also resulted in several novel
tools, as well as verified non-trivial software [68, 97].

However, despite successes, the prevailing opinion in both
academia and industry is still that uptake of formal meth-
ods outside of academia is minimal [64, 152]. In an attempt
to stimulate further adoption of formal methods in indus-
try, as well as learn about the reasons why formal methods
are not used more widely, in Chapter 3 we discuss a case
study with the VerCors verification tool at the Technolu-
tion software development company.

VerCors VerCors [13] is an auto-active deductive program
verifier for verification of concurrent programs. It allows

users to annotate their programs using pre- and postcon-
ditions, and can automatically check if the programs re-
spect the annotations. It uses permission-based separation

logic [66] (PBSL) for ensuring memory safety and prevent-
ing concurrency errors such as data races. Using PBSL, it

also supports various concurrency constructs, such as lock

invariants for verifying programs with locks. Various lan-
guages are supported, such as Java, C, OpenCL, CUDA, or

the custom prototyping language Prototypal Verification

Language (PVL). For the case study of Chapter 3, we only

used the Java frontend.

Case study One of the problems uncovered in the case
study of Chapter 3 concerns a concurrency bug. Specifi-
cally, an object field was accessed concurrently while not
protected by a lock. We show that the bug could have been
caught by VerCors. After completion of the case study, we
communicated the results to the engineers at Technolution.
We took special care to prepare a presentation for an audi-
ence of non-formal-methods experts, by chunking up in-
formation as much as possible and omitting details.

Among several lessons learned, one that stood out was that
there is a barrier for engineers to write verification anno-
tations in their code. This is a barrier of tooling, but also of
culture. In addition, the engineers prefer tools that are close

[111]: Newc
Amazon Cho
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to the mental models they already have about the code. Fi-
nally, the tools being as automatic as possible is also a high
priority.

1.6 Combining Top-Down and
Bottom-Up

As stated previously, both top-down and bottom-up formal
methods have their strengths and weaknesses. On the one
hand, bottom-up verification is effective at the level of con-
crete software, which was an important aspect of the case
study. On the other hand, top-down verification is effective
at starting with a mental model, and refining towards a low-
level implementation in steps. The case study with Techno-
lution confirmed the intuition that a formal method com-
bining both top-down and bottom-up approaches is nec-
essary. This is further explored in Chapter 4: what hybrid
formal method would have been appropriate to use in the
case study of Chapter 3?

The case study being written in Java made VerCors the
logical choice as the bottom-up part of this hybrid formal
method. It has a capable Java frontend, and its design opti-
mized for prototyping makes implementing an augmented
Java frontend tractable. In addition, support for separation
logic makes it possible to consider verification of concur-
rent software, instead of just sequential software.

JavaBIP For the purpose of a hybrid formal method for
Java, the ideal counterpart to VerCors is JavaBIP. It is a
top-down formal method, and a member of the BIP [17]
and Reo [10] family of formal methods. BIP, JavaBIP and
Reo are exogenous component-based software frameworks,
where software is built by composing components. “Exoge-
nous” implies that the interaction between these compo-
nents is specified separately from the behaviour of the com-
ponents. This is in contrast to defining software with inter-
action defined endogenously, that is, as part of the compo-
nent implementation.

Like BIP, a JavaBIP model consists of a collection of compo-
nents, and separately the possible interactions. A runtime

[17]: Basu et al. (2006), Modeling
Heterogeneous Real-time Compo-
nents in BIP

[10]: Arbab (2004), Reo: A
channel-based coordination
model for component composition
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[109]: Neele (2020), Reductions
for parity games and model check-

ing

system orchestrates these interactions, allowing the com-
ponents to focus on implementation details. Unlike BIP,
JavaBIP supports component implementation and interac-
tion specification within Java. This lowers the barrier of
entry and increases the understandability, as it makes the
framework as a whole more concrete.

Tool combination Integrating an auto-active deductive

program verifier like VerCors into JavaBIP gives model de-
signers the capability of adding functional correctness prop-
erties to their JavaBIP models. This eliminates the imple-
mentation gap, as it enables enforcing correctness proper-
ties over component implementations. Specifically, we first

extend JavaBIP models with syntax for specifying pre- and

postconditions of transitions, as well as invariants for com-
ponents and component states.

We then extend VerCors to verify such extended models
against an implementation. This ensures that the imple-
mentation of the JavaBIP model does not only follow pre-
scribed behaviour, but also respects the functional correct-
ness properties.

While the approach was effective, there were still several
shortcomings. First, there was no support for data sharing
between components of the program model. This made the
tool less generally applicable. Second, while JavaBIP sup-
ports models where the number of components depends
on a run-time parameter, VerCors requires upfront speci-
fication of the number of components in the model. Veri-
fying parameterized systems without concrete bounds is a
difficult open research problem [109].

1.7 Choreographic Verification

Solving the issues of data sharing and parameterization in
a hybrid formal methods requires a shift in foundations.
In particular, for the last two chapters of this thesis we
combine VerCors with a different top-down formal method:
choreographies.
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Choreographies Simple choreographies are defined as a

set of participants, which we call “endpoints”, as well as a

list of message exchanges between endpoints [105]. Simple  [105]: Montesi (2023), Introduc-
choreographies are restrictive in the sense that they only  tion to Choreographies
model message exchanges between endpoints, and nothing

else. However, this restriction gives simple choreographies

two key properties. The first is deadlock freedom, meaning

that endpoints that faithfully execute a choreography will

not get stuck waiting for a message that will never be sent.

The second is message fidelity, meaning that a participant

only receives messages of the type it is expecting.

An example of a simple choreography is in Fig. 1.3. It men- Ex =
tions three endpoints: Alex, Bob and Charlie. The chore-
ography specifies two message exchanges, separated by a
semicolon: first Alex sends a message to Bob, and then Bob
sends a message to Charlie. Note that, by specifying every
communication in terms of a sender and a receiver, it is
impossible to write a deadlocking choreography.

Alex — Bob; Bob — Charlie

Figure 1.3: An example of the
simple choreography called Ex

Simple choreographies, e.g. as defined by Montesi, are ab- [Ex]gop = receive Alex;
stract protocols, meaning that they do not constrain how send Charlie;
the endpoints of the choreography process the messages [105]. Figure 1.4: An implementation
A related aspect of choreographies is that they allow gen-  for Bob’s part of the choreogra-
erating an implementation for each endpoint that partic- phy from Fig. 1.3

ipates in a choreography. We call this operation the end-

point projection, denoted with the operator [-],, which takes

as an input a choreography and an endpoint r for which

an implementation must be generated. Essentially, the end-

point projection takes only the part of the choreography

that is relevant for the endpoint r. An example of this is in

Fig. 1.4, where you see an implementation of the choreogra-

phy in Fig. 1.3, generated in such a way that the implemen-

tation executes exactly the portion of the choreography

Bob is responsible for. The central correctness property of

the endpoint projection is deadlock freedom of endpoint pro-

jections: if the endpoint projections of all participants of

a choreography are executed in parallel, no deadlock will

occur. We define simple choreographies more precisely in

Chapter 2.

Historically, choreographies originate from the field of Service-
Oriented Architecture, which concerns the building of ser-

vices by composing other services [95]. In this context, a  [95]: Liu et al. (2018), Encyclope-
dia of Database Systems, Second
Edition
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choreography is defined as a system where no single en-
tity controls all other components of the system. Paraphras-
ing Liu and Ozsu, choreography implies distributed control
similar to how “dancers dance following a global scenario
without a single point of control” [95]. In contrast to chore-
ography, there is also orchestration, where a system is de-
signed from the point of view of one service that controls
the others.

VeyMont The generated implementation in Fig. 1.4 does
not specify what must be done with the message received
from Alex, nor what message should be sent to Charlie. This
is another example of the implementation gap: an imple-
mentation for a bank module that sends a random number
instead of the actual balance deducted from the account is
clearly problematic.

Van den Bos and Jongmans have tackled this implementa-

tion gap by integrating choreographies with auto-active de-
[36]: Van den Bos et al. (2023),  ductive verification [36, 80]. The result of this is the VeyMont
VeyMont: Parallelising Verified  to0], a deductive verifier and code generation tool for chore-
Zgﬁrggzjadof Verifying Par- ographies. VeyMont allows users to annotate choreogra-
[80]: Jongmans et al (2022), A  Phies with pre- and postconditions, which VeyMont can
Predicate Transformer for Chore-  then automatically verify for correctness. That way, con-
ographies - Computing Precondi-  cerns such as a bank withdrawal can be specified in the
:ZZZ in Choreographic Program- choreography. VeyMont is built on top of VerCors, an auto-
[13]: Armborst et al. (2024), The active deductive verifier for concurrent programs [13]. This
VerCors Verifier: A Progress Re- allows VeyMont to naturally support checking of memory

port safety.

VeyMont choreographies are more general than simple chore-
ographies. For example, endpoints in VeyMont choreogra-
phies can do local actions on local state. VeyMont chore-
ographies also have input parameters, and may contain while
loops with loop conditions that involve multiple endpoints.
Because VeyMont supports separation logic through VerCors,
local actions can locally safely use concurrency, without af-
fecting analysis of the choreography.

However, similar to Verified JavaBIP, the choreographies
of VeyMont can still be further extended. For example, end-
points in a VeyMont choreography are not allowed to share
data structures. VeyMont also requires choreographies to
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specify the number of endpoints upfront. Another limita-
tion is that the endpoint projection does not include an-
notations in the projection. This means that, even though
VeyMont verified the choreography, the code generated us-
ing the endpoint projection is not immediately verifiable
with VerCors. Instead, the code must be manually anno-
tated before it can be verified again. In chapters Chapters 5
and 6, we resolve these constraints, allowing verification
of choreographies with shared memory and parameteriza-
tion.

1.7.1 Shared Memory

In Chapter 5 we describe the stratified permissions approach
to extend choreographies with shared memory. Essentially,

stratified permissions is another layer of annotations that

allows the users to specify which endpoint owns what mem-
ory. This has three benefits: first, it allows expressing and

verifying choreographies which use intricate memory shar-
ing strategies for optimization and efficiency. This means

VeyMont becomes more broadly applicable to a broader

class of choreographies.

Second, it allows so-called ghost code to use shared memory
as well. Ghost code is code that a verifier needs to complete
the proof, but which does not influence run-time execu-
tion of the program. While it does not matter for expressive
power of the tool, it does make some proof steps easier to
state. When ghost code uses shared memory, this memory
is called ghost state. This is state that is used for program
verification, but which also does not influence run-time ex-
ecution. In other words, ghost state can only be mutated
using ghost code.

Third and finally, through stratified permissions, the end-
point projection has enough information to determine which
endpoint an expression is related to. This allows the end-
point projection to include annotations in the endpoint pro-
jection. In most cases, if the choreography verifies with
VeyMont, the endpoint projection of a choreography can
be verified with VerCors, too. This is beneficial for mainte-
nance purposes, because the endpoint projection of a chore-
ography can be re-verified, separately from VeyMont, after
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manually modifying the choreography. In addition, by sep-
arately verifying the output of VeyMont with VerCors, de-
tection of bugs and hence robustness is increased.

To illustrate the new support for shared memory, we apply
VeyMont to three choreographic versions of Tic-Tac-Toe.
VanDenBos2023 This example originates from earlier work [VanDenBos2023],
yet is still relevant because the correctness proof given in
earlier work does not apply in the context of shared mem-
ory choreographies. In addition, each version shows a dif-
ferent trade-off between code performance and the amount
of ghost code required. Essentially, the more efficient ver-
sion of Tic-Tac-Toe can also be verified, in exchange for
having to write more annotations with ghost code.

1.7.2 Parameterization

Originally, VeyMont choreographies were already partially
parameterized. For example, a VeyMont choreography can
have a parameter X which endpoint A will send to end-
point B. However, the number of endpoints participating
in a VeyMont choreography always had to be specified up-
front.

In Chapter 6, we extend choreographies with parameteriza-
tion, allowing verification of scalable choreographies. We
achieve this by extending VeyMont choreographies with
two parameterized primitives. The first is endpoint families,
which declare a family of endpoints, the size of which may
depend on parameters of the choreography. The second
is parameterized communication, which is a statement that
specifies communication between two ranges of endpoint
families. This extension only supports one-to-one commu-
nication; this requirement is checked automatically.

We then extend the choreographic verification algorithm

of VeyMont to support these primitives, e.g. by leverag-

ing primitives for structured parallelism from VerCors to

encode the parameterized communication statement. We

also adapt the endpoint projection to support parameter-

ized choreographies. In essence, the projection must be over-
approximating so that the resulting implementation can

execute the choreography for any member of an endpoint

family.



To show the effectiveness of the extension, we manually
apply the approach to a distributed summation choreog-
raphy formulated for a ring network. We show that each
endpoint of the choreography computes the same (correct)
sum.

1.8 Thesis Structure

The main parts of this thesis are summarised below.

I. Formal Methods in Industry

In Chapter 3, we investigate the applicability of the VerCors
deductive verifier on an industrial code base. We find two
bugs in the process. We document our efforts on communi-
cating these technical results to a non-formal-methods au-
dience, by chunking up information and omitting details
as much as possible. We also report on the response of the
audience: there is a significant technical and cultural gap
to start writing annotations, as well as a high preference
for automated methods.

This chapter is based on the following publication:

» Raul E. Monti, Robert Rubbens, and Marieke Huis-
man. “On Deductive Verification of an Industrial Con-

current Software Component with VerCors”. See [106].

II. Towards Verified Concurrent Systems in Java
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In Chapter 4 we combine the JavaBIP framework with VerCors,

yielding the Verified JavaBIP toolset. This allows specify-
ing components and invariants at the design level with
JavaBIP, while simultaneously verifying if the system im-
plementation complies with the system specification with
VerCors. For illustration we apply Verified JavaBIP to the
VerifyThis Casino challenge [6], showing how it can catch
a hypothetical bug.

This chapter is based on the following publication and ar-
tifact:

[6]: Ahrendt et al. (2023), The Ver-
ifyThis Collaborative Long-Term
Challenge Series
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» Simon Bliudze, Petra Van den Bos, Marieke Huisman,
Robert Rubbens, and Larisa Safina. “JavaBIP meets
VerCors: Towards the Safety of Concurrent Software
Systems in Java”. See [27].

» Simon Bliudze, Petra Van den Bos, Marieke Huisman,
Robert Rubbens, and Larisa Safina. Artefact of: Jav-
aBIP meets VerCors: Towards the Safety of Concurrent
Software Systems in Java. See [26].

III. Verified Shared Memory Choreographies

In Chapter 5 we extend VeyMont with support for chore-
ographies with shared memory. This allows expressing a
richer class of choreographies. Besides allowing verifica-
tion of choreographies with efficient implementations, this
also enables correctness proofs that require ghost state. We
apply VeyMont to three variations of the earlier-introduced
Tic-Tac-Toe case study, showing that there is a trade-off
between performance and the amount of annotations re-
quired for verifying correctness.

This chapter is based on the following publication and ar-
tifact:

» Robert Rubbens, Petra Van den Bos, and Marieke Huis-
man. “VeyMont: Choreography-Based Generation of
Correct Concurrent Programs with Shared Memory”.
See [133].

» Robert Rubbens, Petra Van den Bos, and Marieke Huis-
man. Artifact of: VeyMont: Choreography-Based Gen-
eration of Correct Concurrent Programs with Shared
Memory. See [131].

IV. Verified Parameterized Choreographies

In Chapter 6, we further extend VeyMont to support chore-
ographies with a parameterized number of participants. This
feature is crucial for specifying choreographies that scale
naturally in a parameter N. Examples of such choreogra-
phies are protocols for communicating in a ring architec-
ture, or distributed databases where increasing the number
of nodes also increases redundancy and hence robustness
of the network. We illustrate the proposed technique by dis-
cussing a manual encoding of the distributed summation
protocol for ring networks.



This chapter is based on the following publication, techni-
cal report and artifact:

» Robert Rubbens, Petra Van den Bos, and Marieke Huis-
man. “Verified Parameterized Choreographies”. See
[135].

» Robert Rubbens, Petra Van den Bos, and Marieke Huis-
man. Verified Parameterized Choreographies Technical
Report. See [136].

» Robert Rubbens, Petra Van den Bos, and Marieke Huis-

man. Artefact of: Verified Parameterized Choreographies.

See [134].
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Background on Program
Correctness

In this thesis, we focus on a number of techniques for en-
suring correctness of programs: auto-active deductive pro-
gram verification and choreographies. In particular, we fo-
cus on two languages in the context of program verifica-
tion:

» Java, because of its prevalence in industry, and
» Prototypical Verification Language (PVL), the inter-
nal prototyping and verification language of VerCors.

We first introduce basic concepts in program correctness:

deductive logic, inference rules and Hoare logic in Section 2.1.

We show how these foundations are defined, and go through
several examples to illustrate how they can be used in prac-

tice.

We then introduce auto-active deductive program verifica-
tion in Section 2.2, showing how these foundations are real-
ized in practical techniques to verify correctness of object-
oriented programs. In particular, this introduction is done
in the context of VerCors [13]. We give an example of using
VerCors in the context of Java, and also discuss the inter-
face of VerCors.

The speciality of VerCors is analysis of programs with con-
currency and shared memory. For this, it uses permission-
based separation logic (PBSL). We introduce PBSL and PVL
in Section 2.3.

This thesis also focuses on choreographies [105], a correct-
ness by construction (CbC) technique. Following previous
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[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

[22]: Ben-Ari (2012), Mathemat-
ical Logic for Computer Science,
3rd Edition

[117]: Nipkow et al. (2002), Is-
abelle/HOL - A Proof Assistant for
Higher-Order Logic (link)

[105]: Montesi (2023), Introduc-
tion to Choreographies

work, choreographies have been extended with local state
and verification annotations [36, 80]. We introduce simple
choreographies, as well as the essence of the work by Van
den Bos and Jongmans in Section 2.4.

2.1 Program Logics

Program logics are logics that allow reasoning about the
correctness of programs, for some definition of correctness
and some definition of programs. This section gives a con-
densed summary by considering two particular building
blocks of program logics: deductive logic, and in particular,
Hoare logic.

First, we introduce inference rules as a notation for deduc-
tive logic. Then we introduce Hoare logic, which is designed
for reasoning about program correctness in terms of pre-
and postconditions.

As the introduction done in this section is intentionally
minimalistic, we recommend the following works for more
thorough discussions of the material. The textbook by Ben-
Ari introduces many aspects of logic, including program
correctness [22]. The book by Nipkow and Klein gives a
more practical introduction, oriented around the Isabelle
theorem prover [117]. Lastly, the recent book by Montesi
gives a good general introduction to inference rules, before
introducing choreographies using that framework [105].

2.1.1 Deductive Logic

A deductive logic defines the rules for what facts may be as-
sumed, and how to construct new true facts from those as-
sumed facts. Deductive logics are a theoretical framework
more than a practical one; while it is possible to use de-
ductive logic manually on paper to prove correctness of,
e.g., programs, this is tedious and time consuming. In prac-
tice, deductive logics are used to show meta-theorems, that
is, to prove that the core principle of a verification tech-
nique does what is intended. In this thesis, we use the a
syntactical approach strongly inspired by the tree notation
of Gentzen [22].


https://doi.org/10.1007/3-540-45949-9

Inference rules We define a deductive logic as a set of in-
ference rules. An inference rule shows what assumptions
are necessary to reach a particular conclusion. We use no-
tation as shown in Fig. 2.1, where the assumptions hy, ..., h,,
called hypotheses, are separated using a horizontal line from
the conclusion. The intended meaning of an inference rule

is that the conclusion conclusion holds if you can also prove
that its assumptions hy, ..., b, hold. In practice, this is achieved
by recursively applying inference rules until there are no
hypotheses left to prove.

Inference rules with zero hypotheses are called axioms. These
are inference rules that can always be applied, and form the
logical foundation of the deductive system.

Summarizing, given these definitions of inference rules and
axioms, proving a fact boils down to providing a finite se-
quence of rules to be applied to the conclusion. If there are
no leftover hypotheses after going through the sequence,
the fact can be considered “true”.

Example We now give an example by introducing a tiny
deductive system to prove the following fact:

My bike will become wet at 12:00.

In this deductive system, there are two axioms we can use.
These are AXPARK and AXWEATHER, defined as follows:

AXPARK AXWEATHER
My bike is outside at time 12:00. Rain at time 12:00.

The axiom AXPARK indicates you may assume something
about the location of the bike at a certain time. The axiom
AXWEATHER indicates you may assume something about
the time at which it will rain.

From an intuitive point of view, it is already clear that the
goal we set out to prove must be true. However, to formally
show it in a deductive system, the following inference rule
is necessary to connect the goal to the aforementioned ax-
ioms:

INTHERAIN
X is outside at time t. Rain at time t.

X will become wet at time .
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RULENAME
ho hy, ..., by

conclusion

Figure 2.1: Inference rule nota-
tion
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The rule INTHERAIN is schematic: you may choose to plug
in any object X and any time ¢ into the rule. This yields
a new rule, specialized for the values provided. Essentially,
the rule INTHERAIN encodes a transitive property: because
the rain and the object X share a time (in particular, t) and
alocation (in particular, outside), the property of being wet
is transferred from the rain to the object X.

We now have all the parts necessary to complete the proof,
yielding the following proof tree, which should be read
from bottom to top:

AXWEATHER

AXPARK

My bike is outside at time 12:00. Rain at time 12:00.

INTHERAIN

My bike will become wet at 12:00.

1: Hoare originally used the syn-
tax

P{c}Q,
with  brackets around the
program. To the best of our
knowledge, the style with braces

arniirnd the accecertinne i mare

Essentially, we fill in the blanks in rule INTHERAIN, with
X = my bike and ¢ = 12:00, and apply it to the goal. Going
bottom-up, this yields two hypotheses: “My bike is outside
at time 12:00% and “Rain at time 12:00”. These are proved
directly using axioms AXPARK and AXWEATHER, finish-
ing the proof.

2.1.2 Hoare Logic

Hoare logic is a deductive logic for reasoning about the cor-
rectness of programs. It was introduced by Hoare in “An
Axiomatic Basis for Computer Programming” [71], and has
since been a foundation of many program logics. The essence
of Hoare logic is that it, for example, allows proving state-
ments such as “The program x = x + 1; x = x + 1;
increments x by 2” More importantly, Hoare logic is de-
signed in such a way that, if a program does not increment
x by 2, it is also not provable in Hoare logic. When a logic
has this property, we call it “sound”, meaning, whenever
you can prove a fact in the logic, the fact is also indeed
true from a semantic point of view.

Syntax A key part of Hoare logic is the Hoare triple, which

is a ternary predicate typically written using the following

notation!:



{Prc{Q}

Here, P is called the precondition, and Q the postcondition.

They are expressions over the program state of type boolean.
For assertions P and Q we assume a syntax with logical

atoms and operators such as A, v, o, and true and false.

For programs, referred to symbolically with ¢ and d, we use
the following syntax?:

c,d = skiplc;d|if b then celse d

Programs are referred to symbolically with letters ¢ and d.
The skip statement does nothing. The sequential composi-
tion statement first executes c, then d. The if statement first
evaluates the boolean-typed expression b. If this results in
true, ¢ is executed. Otherwise, d is executed. For boolean
expressions b, we assume a standard syntax with integer
and boolean literals, and appropriate unary and binary op-
erators.

The meaning of a Hoare triple is as follows:

If the program c is started in a state s s.t.
{P}c{Q} < 1 ssatisfies P, then the state s’ that results
from executing ¢ will satisfy Q.

In other words, { P } ¢ { O } holds if, when P holds initially,
Q holds after running c. This is called partial correctness,
which is the type of correctness that is relevant for this
thesis. Alternatively, there is also total correctness, which is
written using a Hoare triple with square brackets:

If the program c is started in a state s
s.t. s satisfies P, then the program c will
terminate in a finite number of steps, and
the resulting state s will satisfy Q.

[Plc[Q] &

This type of correctness is not discussed further in this the-
sis. Note that we do not define what it means for a program
c to be executed in a state s and to result in a state s’. This
can be done by defining a program semantics, i.e. by for-
mally defining how programs compute output states given
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2: We omit a looping statement
and an assignment statement
from the syntax for ease of pre-
sentation. They are, however,
typically included; see [116] for
a practical example.
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[116]: Nipkow et al. (2014),

Concrete  Semantics
Isabelle/HOL

With

input states. This is out of scope for this condensed sum-
mary; we refer the reader to [116] for a practical introduc-
tion.

Inference rules To manipulate and prove correctness of
Hoare triples, we define an axiom or inference rule for each
type of statement:

HSEQ
{Pc{Q} {Q}d{R}
{P}c;d{R}

HSKkIP
{P}skip { P}

HIr
{Prb}c{Q} {Pr-b}d{Q}
{P}ifbthencelsed {Q}

The skip statement does nothing, and hence a precondition
P that holds before the statement also holds after executing
it. The sequential composition statement satisfies a Hoare
triple if an intermediate “connecting” condition Q can be
found that connects the two statements. In other words, a
condition Q has to exist, which is both a suitable postcon-
dition for ¢ as well as a suitable precondition for d. The in-
ference rule for if requires two scenarios to be considered:
one where b evaluates to true, and one where b evaluates to
false. The Hoare triples for each branch can use this extra
knowledge (meaning, whether b evaluated to true or false)
in proving their own respective Hoare triples.

Finally, we define an inference rule that is not related to a
particular statement:

HCONSEQ
PP {Ptc{Q}t Q-0
{P}c{0Q}

This rule is useful when the pre- and postconditions of
two Hoare triples do not line up precisely. It effectively al-
lows weakening a the precondition of a Hoare triple, and
strengthening a postcondition. The only caveat is that the
two hypotheses that check the weakening and strengthen-
ing of the pre- and postcondition will need to be checked
outside the deductive system, as our definition of Hoare
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logic does not include inference rules for propositional logic.
When the implications are trivial, we omit them.

Example We will now illustrate Hoare logic with a small
example. Consider a company that builds automatically open-
ing and closing garage doors, and which has recently de-
cided to start developing the control software as well. To
develop the control software, they have decided to use the
language defined earlier.

The language first has to be extended to make it suitable for
implementing garage door control software. In particular,
the company adds two statements to open and close garage
doors. In addition, boolean conditions are extended to also
contain a predicate to check if the garage door is open or
not:

¢ ::= - | open | close b ::= - 1 isOpen

The garage doors that this company builds have a partic-
ular design: if the open statement is executed when the
garage door is already open, the garage door engine will
burn out. To prevent this from happening in programs ver-
ified with Hoare logic, the company restricts the inference
rules for open and close as follows:

HOPEN
{ —isOpen } open { isOpen }

HCLOSE
{isOpen } close { —isOpen }

By defining the inference rules this way, a program can
only be proven correct if it never executes open when the
garage door is already open. However, note that this does
not prevent you from writing programs that burn out the
engine. The safety property “engine does not burn out” is
conditional on proving correctness of a program before you
execute it. In other words, defining inference rules in a cer-
tain restricted way does not stop an engineer from writing
the program “open; open”, uploading that to a garage door
controller, and then burning out the garage door engine.
However, if the engineer verifies their program first with
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3: Note that this is an instance
of the bottom-up verification ap-
proach introduced in Chapter 1.
We could also use a top-down
approach, where we first write
down the Hoare triple we need,
and fill in the missing program ¢
in steps. We will leave this as an
exercise to the reader.

Hoare logic, and only then uploads the program to the con-
troller, engine burn-outs will be prevented.

The challenge we now face is the following: can we write a
program that will never make the garage door engine burn
out?

We will tackle this challenge by first constructing a pro-
gram, called SafeOpen, that we believe should work.3. Then
we will specify the behaviour of SafeOpen using a Hoare
triple, and use Hoare logic to prove the program correct.

We write the program by following basic intuition: if we
always check if the door is open before executing the open
instruction, the engine should never burn out. We encode
this approach by guarding open with an if:

SafeOpen = if isOpen then skip else open

The Hoare triple for SafeOpen should respect the following
constraints:

» It should always be executable. Hence, its precondi-
tion should be true.

» Itshould always terminate in a state where the garage
door open. Hence, its postcondition should be isOpen.

This yields the following Hoare triple:
{ true} SafeOpen { isOpen }

For the second step of proving SafeOpen correct, we will
start by applying the rule for if, HIF, resulting in the fol-
lowing partial proof tree:

{ true A isOpen } skip { isOpen } { true A —isOpen } open { isOpen }

{ true} if isOpen then skip else open { isOpen }

We would like to finish the proof tree by applying the ax-
ioms for skip and open, namely HSk1p and HOPEN. How-
ever, this is not possible because the “true A” part of the
precondition does not match the preconditions of the in-
ference rules. We can drop this part of the precondition in
the partial proof tree by using the rule HCONSEQ. In the
next two partial proof trees we have omitted the part for



the false branch of the proof for space reasons, as indicated
by the triple dots symbol, but it is symmetric to the true
branch.
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true A isOpen — isOpen {isOpen } skip { isOpen }

HCons
R { true A isOpen } skip { isOpen }

HIF

{ true} if isOpen then skip else open { isOpen }

Figure 2.2: Partial proof tree after applying rule HCONSEQ.

Finally, now that the precondition is in the proper form, we
can finish the proof tree using the axiom for skip, HSKIP.

HSKk1p

true A isOpen — isOpen {isOpen } skip { isOpen }

HCONSE
° { true A isOpen } skip { isOpen }

{ true} if isOpen then skip else open { isOpen }

Figure 2.3: Finished proof tree after applying rule HSK1p.

Discussion The garage door example shows it is possible
to reason precisely about programs with domain-specific
requirements through Hoare logic. However, it also shows
that even for a basic setting and small programs, such as
opening and closing garage doors, the amount of work re-
quired can quickly gets out of hand if done manually.*

This leads us to believe that it is crucial to design and im-
plemented these techniques in verification tools, such that
we can bring the benefits of program verification to in-
dustry, while minimizing effort required of the user. Vice
versa, it is important that the core of the algorithms imple-
mented in these verification tools is rooted in formalisms
like Hoare logic. This way, we can explain the guarantees
they give, and reason about and compare the strengths and
weaknesses of verification tools.

4: We cannot even show the par-
tial proof tree within the mar-
gins of the page after applying
only two rules!
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[91]: Lathouwers (2023), Explor-
ing annotations for deductive ver-
ification

[110]: Nelson et al. (2019), Scal-
ing symbolic evaluation for auto-
mated verification of systems code
with Serval

writes

!

Implementation
annotated

VerCors
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Figure 2.4: VerCors workflow

2.2 Auto-Active Deductive Program
Verification with VerCors

One way to guarantee correctness of programs is by using
auto-active deductive program verification tools. These are
program verification tools that check if a program complies
with a specification. Often, this specification is provided by
the user, but this does not have to be the case. For example,
the specification might be implicit, such as with the inte-
ger division operator a/b, which requires that b is non-zero.
Depending on the complexity of the program, it might also
possible to generate annotations [91].

Theoretically speaking, if a deductive program verification
tool terminates successfully, this means there exists a Hoare
triple, as defined in Section 2.1, with pre- and postcondi-
tions matching the specification of the program. The pro-
gram verification tool guarantees that there exists a proof
of triple in an appropriate program logic, e.g. Hoare logic.

The word “auto-active” implies that the tool requires input
from the user in the form of annotations. Once these anno-
tations are provided, the tool can analyse the program and
its specification without intervention from the user [110].

The work done in this thesis takes place in the context of
VerCors, a program verification tool with a focus on con-
current programs with shared memory. For simplicity, this
section we will assume a sequential setting. The concurrent
capabilities of VerCors will be introduced in Section 2.4. We
will first discuss the general verification workflow in Sec-
tion 2.2.1, followed by a description of VerCors’ architec-
ture in Section 2.2.2. Finally, we will give an introduction
to correctness annotations in the context of the Java fron-
tend of VerCors in Section 2.2.3.

2.2.1 Verification Workflow

Verifying a program with VerCors works as visualized in
Fig. 2.4. The users starts with annotating a program with
a specification. We will show examples of correctness an-
notations in Sections 2.2.3 and 2.3. The program and its
annotations are given to VerCors, which then analyzes the
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program and verifies that the program respects the annota-
tions. Verification is done by translating the input program
and specification to a low-level representation, and then
invoking an existing verifier. This is further discussed in
Section 2.2.2. Verification with VerCors yields one of the
following three results:

1. If all annotations are respected, VerCors prints “veri-
fication successful” and terminates. In this case, where
VerCors can show that a program follows the speci-
fication exactly, we call the program “correct” with
respect to its specification (as described by the anno-
tations). Relating this result to Section 2.1, the pro-
gram and its specification is also a valid Hoare triple.
2. VerCors might report an error on one of the annota-
tions, indicating that the program does not respect
this annotation. This means that there is either a bug
in the program, or a problem with the annotations.
3. If the correctness proof is too difficult for VerCors,
VerCors might time out with an indication of which
annotation it could not verify. This might happen
when e.g. non-linear integer arithmetic is involved,
which is undecidable [160]. VerCors might also not  [160]: Zhang et al. (2024), Deep
terminate, which can happen when quantifier instan- ~ Combination of CDCL(T) and

e . . . Local Search for Satisfiability
tiation heuristics cause the underlying solver to di- ¢ " """ - Integer Arith-

verge [35]. metic Theory

. . [35]: Bordis et al. (2024), Free
In cases 2 and 3, the user will have to reconsider both the  pycrs. an Alternative to Ineffi-

program and specification. VerCors being unable to prove  cient Axioms in Dafny
correctness is not a judgement about the quality of the pro-

gram or specification. There can be a problem (e.g. bug or

typo), in either, or even both. After making appropriate

changes, the user can consider going through the workflow

again.

2.2.2 Architecture

VerCors supports several languages, such as Java, C, OpenCL,
Cuda and PVL. To keep the complexity of a multi-language
verifier tractable, VerCors is centered around its internal in-
termediate representation (IR), called Common Object Lan-
guage (COL). When analyzing a program, the program is
first parsed and then translated into COL. In this case, there

Figure 2.5: VerCors architecture
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[108]: Miller et al. (2016), Viper:
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[16]: Barbosa et al. (2022), cvc5: A
Versatile and Industrial-Strength
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[107]: De Moura et al. (2008), Z3:
An Efficient SMT Solver

[137]: Rubbens et al. (2021), Mod-
ular Transformation of Java Ex-
ceptions Modulo Errors

while(c()) {
mi();
if (p()) {

break;

}
m2();

}

(a) Before translation

try {
while(c()) {
mi();
if (p()) {

throw new Break();

m2();

3
} catch (Break e) { }

(b) After translation

Figure 2.6: Example of translat-
ing break into throw

2 Background on Program Correctness

might still be programming-language specific AST nodes

in the IR. Then, VerCors applies rewrite steps that encode

high-level constructs from the input programming language
into low-level constructs supported by Viper [108], the back-
end of VerCors. Viper then in turn translates the low-level

program into first-order logic, and submits this to an SMT

solver. SMT solvers can automatically prove or disprove a

fragment of first-order logic propositions. In practice, we

use solvers such as Z3 or CVC5 [16, 107] to check its cor-

rectness. When Viper terminates with a verification result

VerCors translates the result back to the level of the input

sources. This way, the user can reason about the verifica-

tion errors in the context of the input program, and adjust

the specification or implementation if required.

For example, in the Java frontend, abrupt control flow prim-
itives like break and continue are handled specially. When
these primitives are used together with finally, VerCors
first transforms all instances of these into exceptional con-
trol flow [137]. After this, VerCors applies a transformation
that transforms all exceptional control flow into goto.

An example of transforming break into throw is shown in
Fig. 2.6. In the top listing there is the input program, con-
sisting of a while loop that contains a break statement.
VerCors translates the break statement into a throw, and
wraps the while loop into a try-catch block that catches
the exception thrown by the throw statement, as shown in
the bottom listing. This transformation preserves the con-
trol flow of the input program, and ensures that all control
flow is either sequential or exceptional. This makes con-
trol flow in the program simpler overall, as there are less
primitives to consider.

This is one of the core ideas of the VerCors architecture:
decomposition of larger transformation steps into smaller
ones makes the overall architecture more maintainable. In
the case of the earlier example, the larger transformation
step is handling break and continue in the presence of
finally. The smaller transformations are e.g. as break to
throw and exceptions to goto.

Most of the work done in this thesis, except for Chapter 3,
extends this transformation-based architecture. Essentially,
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1|class C {
2| //@ requires a >= 0 & b >= 0;
3| //@ ensures \result == (a @& b) / 2;
4 int smartAvg(int a, int b) {
5 int r;
6 if (A% 2==18& b % 2 ==1)
7 r=1;
1fclass C { 8 else
2 //@ ensures \result == (a @ b) / 2; 9 r=0;
3 int avg(int a, int b) { 10
4 return (a + b) / 2; 11 returna /2 +b/2+r;
5 } 12| 3
6|3 133
(a) An implementation of integer averaging that (b) An implementation of integer averaging that
avoids integer overflow avoids integer overflow

Figure 2.7: Two implementations of avg in Java. Paraphrased from Chen [45].

the goal is to solve the problem of the chapter by defin-
ing one or more transformations that 1. simplify high-level
constructs away, and 2. can be implemented in VerCors.
This allows reusing the existing verification infrastructure
of VerCors when implementing tool support.

2.2.3 Java Verification with VerCors

As an example of verification in Java, consider the avg method
in Fig. 2.7a. This method computes the average of a and b
by adding them up and then dividing by two.

In the Java frontend of VerCors, contract annotations are
written as specification comments. These are standard Java
comments where the first character after the comment marker
isan “@” symbol. With specification comments, contract an-
notations can be written for Java programs without touch-
ing the actual implementation. In addition, specifications
comments are ignored by the Java compiler, and hence do
not influence the runtime behaviour of the program.

Within specification comments, users can write method
contracts. These consist of a precondition and a postcon-
dition. A precondition has the syntax “requires expr;”,
where expr is an expression of boolean type. In particular,
expr may read but not modify object fields. VerCors checks
this automatically. A precondition indicates that expr has
to hold before the method can be called. Conversely, “ensures
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5: At the time of writing,
VerCors does mnot support
bounded number arithmetic.

One way to support this is to
integrate predicate subtyping,
also referred to as refinement
types, into VerCors, as described
by Dubbeling [60].

N

At avg.java

w

4
5
6 return (a + b) / 2;
7
8

©

10 | Addition might overflow.
11

Figure 2.8: Output of verifica-
tion of Fig. 2.7a

6: We leave generalization of
this method for both positive
and negative arguments, and its
correctness, as an exercise for
the reader.

expr;” indicates expr should hold when the method termi-
nates. Pre- and postconditions in specification comments
correspond to pre- and postconditions in Hoare triples.

An example of a postcondition is on line 2 of Fig. 2.7a, which
contains the specification of the avg function. In this case,
it states that the return value of the method, represented by
the primitive \result, should be equal to a @ b. Here, ®
refers to the mathematical addition operator. In contrast to
plain integer addition, @& does not overflow and returns a
number in Z.> This uncovers a problem with the definition
of avg: for large values of a and b, addition will overflow,
causing a wrong result to be computed!

To detect the overflow problem, we can automatically ver-
ify Fig. 2.7a with VerCors. The analysis takes a few seconds,
and the output will be something like Fig. 2.8.

Fixing the problem To avoid overflow, we can take spe-
cial care in the implementation of avg and distribute divi-
sion over a and b. To compute the proper average, we need
to carry over a remainder of 1 separately in the case that
both a and b are odd. This is approach is implemented in
the smartAvg method in Fig. 2.7b. This fix imposes a mod-
est precondition: a and b must both non-negative®.

When Fig. 2.7b is analysed, VerCors finds no errors and
prints “Verification completed successfully”. This
means that, given that the precondition on line 2 is satis-
fied, smartAvg computes the average of a and b without
causing overflow. Formally, it means that there exists a
proof for the following Hoare triple:

a®hb

{a>0Ab>0}smartAvg(a, b) {result = >

Assertions Assertions can be added to a method body
as specification comments using the following syntax: //@
assert expr;. VerCors ensures that an assertion holds at
that point in the program. If this is not the case, VerCors
will fail to verify the input. For example, we can add the
following assert to line 10 to locally ensure that we made
no mistake when computing r:
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//@ assert r == 0 || r == 1;

To instruct VerCors to assume that an expression holds
without checking it first, the “//@ assume expr” state-
ment can be used. A complete description of the VerCors
specification language can be found in the VerCors tuto-

rial [154]. [154]: VerCors team
VerCors tutorial (link)

2.3 Permission-Based Separation
Logic with PVL

The Prototypical Verification Language (PVL) is an object-
oriented programming (OOP) language with contracts and
assertions. It is used to prototype verification features in
VerCors. It can also be used to verify programs that use pro-
gramming language features that VerCors does not support
yet. In that case, a manual encoding step is required.

Besides standard Object Oriented Programming (OOP) con-
structs such as classes, fields and methods, it has primitives
for verification, such as assume and assert statements.
The syntax of PVL for OOP primitives is a subset of Java.
For verification annotations, the syntax is the same as in-
troduced in the previous section, except that annotation
comment markers are not necessary.

VerCors verifies memory safety and data-race freedom us-
ing permission-based separation logic (PBSL) [66]. A data  [66]: Haack et al
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race occurs when two or more threads access shared mem-  Permission-Based Separation

ory, and one of the accesses is a write. In other words,
shared memory can either be read from by multiple threads,
or written to by one thread, but never at the same time. This
is the key invariant that PBSL enforces.

Programs

PBSL achieves this in two parts. First, it allows users to
write permission annotations in contracts and assertions.
These permission annotations indicate which locations are
readable and writeable. VerCors then checks if the program
respects these permission annotations. Effectively, a pro-
gram annotated with permission annotations can only read
or write to locations specified by the annotations. Second,

Logic for Multithreaded Java
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x,y,z == field,
C ::= class,
T ::=
prog ::= decl
cls ::=

v,u, w ::= variable, m ::= method, f ::= function

P ::= predicate

int | boolean | seq<T>1C | -

decl ::= cls | pred | func | proc

lock_invariant R; class C { Twv; pred func meth }

pred ::= resource P(Tv) = R;
func := K pure T f(ﬂ) = H;
meth, proc :=K T m(Tv) { S}
Su=H = H; |if (H) S S|

I K par (Tv

=H..HS

E:=vIE + EI--

H ::=--1H.x|this

R:=H|Perm(H.x, H)IR ** RIH ==> R
K ::=requires R; ensures R;

Figure 2.9: PVL syntax

[13]: Armborst et al. (2024),
The VerCors Verifier: A Progress
Report

[154]: VerCors team (2025),
VerCors tutorial (link)

PBSL allows permissions to be split, merged, but never du-
plicated. This ensures there is only ever a single write per-
mission, or multiple read permissions, but never a write
and a read permission simultaneously.

We will first introduce the syntax of PVL in Section 2.3.1.
Then, we will introduce permissions and resource predi-
cates in Section 2.3.2. Finally, in Section 2.3.3 we will in-
troduce the concurrency features of PVL that are relevant
for this work: lock invariants and par blocks. For a more
extensive documentation of PVL, see [13, 154].

2.3.1 Basic Syntax

The syntax of PVL is shown in Fig. 2.9. We first define
names for several types of declarations, including some
typical elements for each declaration type. E.g. the names
x, y and z are symbolic names for class fields. PVL sup-
ports several built-in types, such as integers, booleans, and
sequences. Each class C is also a distinct type. A PVL pro-
gram consists of zero or more top level definitions: classes,
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predicates, functions and procedures. Predicates, functions
and procedures also occur as members of a class. When this
is the case, they can refer to fields of the class instance us-
ing this. When a procedure is defined within a class, we
refer to it as method. The difference between functions and
methods/procedures is that functions may only read heap
locations, and not modify it.

The syntax of classes and standard statements (e.g. assign-
ment, if, while, etc.) is similar to Java. Lock invariants,

with syntax lock_invariant R, are discussed in Section 2.3.3.

For while loops, a dedicated verification annotation is sup-
ported: the loop invariant, with the following syntax:

loop_invariant I;
while (E) { S }

The loop invariant allows VerCors to verify the loop with-
out having to unfold every iteration of the while loop. It
does this by requiring the invariant to hold before the while
loop, and at the end of every loop iteration. This allows
making an inductive argument for correctness of the while
loop: if the invariant holds before iteration 0, and assuming
the invariant holds at the start of iteration n, the invari-
ant holds at the end of iteration n, the invariant may be
assumed after the loop terminates, disregarding the num-
ber of iterations actually executed.

The fact that loop invariants are required to make the proof
finite makes them a bit different from other specification
annotations. Whereas other types of annotations, e.g. pre-
and postconditions, document and restrict the desired pro-
gram behaviour, the purpose of loop invariants is to serve
as proof hints that allow the verifier to do a finite proof. In
contrast, without the inductive argument, VerCors would
have to unroll the loop an unknown number of times.

The inference rule for while can be defined as follows:

{INE}S{I}
{I}while (E) S{-EnAI}

HWHILE

Note that during one of the loop iterations, the invariant
may be temporarily violated. What is key for the inductive

39
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Figure  2.10:  Implementa-
tion of avg from Fig. 2.7b
reimplemented in PVL

[55]: Darabi et al. (2017), A Veri-
fication Technique for Determinis-
tic Parallel Programs

requires a >= 0 & & b >= 0;

ensures \result == (a @ b) / 2;

int avg(int a, int b) {
intr=(a%2==18 b%2==1721:0);
returna /2 +b/ 2 +r;

}

AU R W N =

argument is that the invariant is re-established before the
iteration finishes.

Another special PVL feature is the par block statement. It is
an important concurrency primitive in PVL [55]. The first
part of the par block is the contract, which specifies be-
haviour from the perspective of one thread. Then follows a
binder that will contain the index of each thread, followed
by a range that determines the number of threads. The
body of a par block consists of imperative statements that
each thread started by the par block will execute, such as
if, while, par, etc. The semantics of par blocks is further
discussed in Section 2.3.3.

Figure 2.9 defines several kinds of expressions. Pure ex-
pressions E only use local variables, pure operators like +
and immutable value constructors (e.g. sequences). A heap-
dependent expression H extends E with field dereferenc-
ing. Resource expressions R can contain permission anno-
tations, which we discuss further in Section 2.3.2.

Different kinds of expressions are separated at the syntax
level to make it easy to distinguish expression capabilities.
Intuitively, VerCors uses annotations in the form of R to
check memory safety of expressions H. Expressions E are
essentially constraints/functions over local state and do not
require special care to evaluate.

Contracts K are written using the requires and ensures
keywords, and can be added to methods, procedures, func-
tions. Because functions may only read heap locations, the
postcondition of a function must always be an expression
H. This is checked separately by VerCors.

Example Figure 2.10 shows the example from the previ-
ous section, written in PVL as a top-level procedure. Note
how the specification comment markers are absent, and the
rest of the implementation is identical.
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2.3.2 Permissions

Permissions specify which fields are writable or readable
using the following syntax: “Perm(o.x, e)”. Here,oisan H
expression and e an expression of type fraction s.t. 0 < f <
1. Fraction f = 1 specifies read and write access. Fraction
0 < f < 1 specifies only read access. Fields that are not
specified with Perm, or with f = 0, are inaccessible.

Permissions can be combined using the separating conjunc-
tion ** operator, such that the sum of fractions never ex-
ceeds 1 for a field. Permissions can be split and combined,

e.g.
Perm(v.f, 1) =Perm(v.f, 1\2) ** Perm(v.f, 1\2).

Note the use of “\” to indicate fractional division, as op-
posed to integer division using “/”. For boolean expressions,
** behaves as &&. We define the footprint of an expression
or statement as the permissions required to evaluate or exe-
cute it. E.g. a possible footprint of 0. x would be Perm(o.x,
1\2). Note that for heap locations that are only read, any
positive fraction of permission suffices. An acceptable foot-
print for o.x = o.y is Perm(o.x, 1) ** Perm(o.y,
1\3).

Self-framing InPBSL, expressions are “self-framing”, when
they include the permissions for all heap locations occur-
ring in the expression before said heap location is read. Ef-
fectively, an expression being self-framing means that the
expression evaluation result will not change, even in the
presence of multiple threads executing concurrently.

Syntactically, self-framing implies that if a heap location
is read on the right-hand side of a separating conjunction,
permission for this heap location must necessarily be present
in the left-hand side of this separating conjunction. For ex-
ample, the expression

Perm(x.f, 1) ** x.f ==
is self-framing:

1. x.f is the only heap location read by this expression,
and
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requires Perm(bob.balance,
ensures Perm(bob.balance,
void deduct(User bob, int x) {

}

42

1);
1);

assert bob.balance >= x;
bob.balance = bob.balance -

Figure 2.11: A PVL procedure
that deducts x from the balance

of user bob
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resource nneg(User u) =
Perm(u.balance, 1) **
u.balance >= 0;

requires nneg(bob);
ensures nneg(bob);
boolean deduct(
User bob,
int x
) {
unfold nneg(bob);
boolean enough =
bob.balance >= x;
if (enough) {
bob.balance =
bob.balance - x;
}
fold nneg(bob);
return enough;

3

X;

2 Background on Program Correctness

2. permission for x. f is specified on the left-hand side
of the separating conjunction.

In this example, x is some local variable, such as a method
argument or perhaps a quantifier binder.

Self-framing of expressions is a well-formedness condition
that is automatically checked by VerCors. Several contract
annotations are required to be self-framing, such as pre-
and postconditions and loop invariants. Assertions do not
have to be self-framing: they are well-formed if there is
enough permission available from the context to evaluate
the asserted expression. For example, in Fig. 2.11 the asser-
tion in the deduct method is self-framing and hence well-
formed. This is because the precondition of the method
provides sufficient permission to read field balance. Note
that, unfortunately for bob, well-formedness does not im-
ply truth. Indeed, when deduct is analysed with VerCors,
verification will fail. The asserted expression makes more
sense as a precondition.

Adding and removing permissions Permissions can be
manipulated directly with inhale and exhale statements.
The inhale R statement adds the permissions R to the
current thread. The exhale R statement first checks if
the current thread actually has all the permissions R, and
then removes them. Verification fails if there are not suf-
ficient permissions available. These statements are verifi-
cation primitives for encoding programming language se-
mantics. E.g. acquiring a lock that guards write permission
to the field 0. x can be modelled with the statement inhale
Perm(o.x, 1).When used with plain boolean expressions,
inhale and exhale behave as assume and assert respec-
tively.

Resource predicates Resource predicates group expres-
sions, including permissions, under an opaque name. They
are defined using the syntax:

resource P(ﬂ) = R;

Here, P is the predicate name, Tvisa sequence of typed
parameters and R is a resource expression, also called the
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predicate body. As predicates are opaque, VerCors requires
annotations that specify when a predicate body should be
exchanged for a predicate name and its arguments, and vice
versa. This is done with the fold and unfold specification
statements. More specifically, if the expression R holds in
the current verification state, then fold P(e) will cause all
permissions in R to be removed from the verification state,
while the predicate P(e) is added to the verification state.
The unfold statement does the inverse: it removes P(e),
and adds R.

Consider a variation of the previous deduct procedure in
Fig. 2.12, which returns true if there was enough money in
the account to deduct. Here, on line 1 the predicate nneg is
defined, where nneg abbreviates “non-negative”. This pred-
icate contains a permission for the field u.balance, and
maintains that it is non-negative. In a way, this predicate
specifies a class invariant over the User class that can be
packed and unpacked as necessary [124]. To access the bal-
ance field, the nneg predicate is unfolded on line 11. After
trying to deduct x from the balance, it is folded on line 18.

There is also the \unfolding expression. It unfolds a pred-
icate temporarily for the duration of evaluating the expres-
sion, and folds it directly afterwards.

2.3.3 Concurrency in PVL

In this thesis, we use two concurrency features from VerCors
and illustrate them using PVL: lock invariants and par blocks.

Lock invariants To mediate access to shared resources,
VerCors supports lock invariants, which define resources
that are guarded by a lock [65]. A lock invariant is declared
on a class using the syntax lock_invariant R. The de-
fault lock invariant of a class is true.

An object can be locked using the statement lock H, where
H must be an expression of some class type C. When an
object is locked, the resource R is added to the state. When
unlocking the object with syntax unlock H, the lock in-
variant R needs to hold, after which R is removed from the
state.

[124]: Parkinson (2007), Class
invariants: The end of the
road (link)

1 | lock_invariant

2 Perm(balance, 1) **
3 balance >= 0;

4 | class User {

5 int balance;

6

7 boolean deduct(int x) {
8 lock this;

9 boolean enough =
10 balance >= x;
11 if (enough) {

12 balance =

13 balance - x;
14 3

15 unlock this;

16 return enough;

17 3

18 |3

Figure 2.13: The User class,
with the deduct method imple-
mented with a lock invariant


https://people.dsv.su.se/~tobias/iwaco/p3-parkinson.pdf

U

_ O 0 0N U R W

44 | 2 Background on Program Correctness

requires Perm(us[*], 1);
requires
(Vi = 0..N; us[i] !'= null);
void deductAll(User[] us) {
par (int i = 0 .. N)
requires Perm(us[i], 1) **
us[i] != null;
{
us[i].deduct(5);
3
}

Figure 2.14: A procedure that
deducts 5 from all objects
in array us, where N equals
us. length.

7: Quantified permissions are
orthogonal to the work pre-
sented in this thesis. For more in-
formation, see the VerCors tuto-
rial [154].

Lock invariants are comparable to predicates, where lock-
ing corresponds to unfolding the predicate, and unlocking
corresponds to folding the predicate. The difference is that
locking and unlocking influences the run-time behaviour
of the program, while folding and unfolding are strictly ver-
ification annotations. VerCors also checks if the lock invari-
ant is initialized before the object is locked. However, for
brevity, we do not further discuss this in our description of
PVL.

A variation of the previous deduct procedure is shown in
Fig. 2.13, this time defined in the context of the User class.
The lock invariant is defined at line 1, mirroring the con-
tents of the nneg predicate from Fig. 2.12. Lines 8 and 15
lock and unlock this, giving write access to the balance
field in the process.

Structured parallelism with the par block  For structured
parallelism, PVL has the par block. It is written using the
following syntax:

par (int x = H .. Hp) K {
S
}

Here, H; and Hjy, indicate the bounds of thread identifiers,
meaning the par block will start H, — H; number of threads.
The semantics of a par block is as follows: when reaching
a par block, Hy, — H child threads execute the par block
body in parallel. The parent thread waits until the child
threads finish. This behaviour makes the par block struc-
tured, in contrast to e.g. starting individual threads. In ad-
dition, the contract K required by the par block is asserted
for every thread that is started, causing the precondition
(resp. postcondition) to be implicitly quantified such that
(Vi € [Hj, Hp); R) must hold just before (resp. just after) the
par block, where R is the precondition (resp. postcondition)
of K.

In Fig. 2.14 we revisit deduct one final time. Here, deduc-
tAll deducts 5 from each User instance in the array us.
The syntax used on line 1 is syntax sugar that expands
into a quantified permission’ for all indices of the array.



These permissions then get distributed among the individ-
ual threads started by the par block.

2.4 VeyMont: Choreographic
Verification

This thesis builds on earlier work by Van den Bos and Jong-
mans on verification of choreographies [36, 80, 105]. In this
section we will first give an introduction to the essence of
choreographies in Section 2.4.1. Then we will describe the
verification approach, as implemented in VeyMont and pre-
sented in earlier work, in Section 2.4.2.

2.4.1 Simple Choreographies

Choreographies are a notation to describe interactions be-
tween parts of a system. This way, choreographies 1. pro-
vide a global view of a system, encompassing all parts of
the system simultaneously, while 2. also providing a bridge
between the global and the local view through the end-
point projection. In this section we define simple choreogra-
phies, in which the only interaction allowed is a message
exchange between two endpoints. The section is strongly
inspired by chapters 1 and 2 of the book “Introduction to
Choreographies” by Montesi [105].

Syntax A simple choreography consists of a set of par-
ticipants, which we call endpoints in this thesis, and a se-
quence of communications between these endpoints. We
use the following syntax:

e,a,b,c,d ::
C::

endpoint names
C;Cla— blskip

Here, e, a, b, c and d are symbolic endpoint names. For con-
crete endpoint names, we use a sans serif font, e.g. “Alex”. C
is the choreography, a sequence of communications. skip is
the empty choreography, and indicates no communication

2.4 VeyMont | 45

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

[105]: Montesi (2023), Introduc-
tion to Choreographies
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between any endpoints. For example, this is a simple chore-
ography called Ex1 where Alex sends a message to Bob, and
then Bob proceeds to send a message to Charlie:

Ex1 = Alex — Bob; Bob — Charlie

Because of their extremely restricted definition, it is clear
that choreographies have two favourable properties:

» They are deadlock free, because the syntax of chore-
ographies only allows stating communication actions
as pairs of endpoints. This syntactically ensures there
is always one sender and one receiver in any commu-
nication.

» Communications are always well-typed. This means
that the receiving party will always know what mes-
sage type they are supposed to receive, and that the
sending party has enough information to check they
are sending the proper type. This is called message

fidelity.

For ease of presentation, in this section we omit the types
from the communications. However, in a more general set-
ting, each communication is annotated with a type. For ex-

int
ample, Alex — Bob means that Alex sends a message of
type int to Bob. Because of message fidelity, Bob will al-
ways receive a message of type int, and not of some other

type.

In this thesis, choreographies are partially synchronous: end-
points will block waiting for a message to receive, but they

will not wait for the message to be received after they have

sent it. Partial synchronicity implies that a seemingly se-
quential choreography allows multiple interleavings. Con-
sider the simple choreography Ex2:

Ex2 = Alex — Bob; Charlie - Dom

Ex2 allows the obvious execution where Alex sends first.
However, because of partial synchronicity, the execution
where Charlie sends first is also allowed. In contrast to Ex2,
Ex1 allows only one execution: first Alex sends a message
to Bob, then Bob sends to Charlie. This is because Bob par-
ticipates in both communications, and hence the two com-
munications of Ex1 cannot be reordered.



Essentially, in choreographies, the sequential composition

operator “;” commutes if the endpoints that appear on the
left do not overlap with endpoints on the right:

a->bc—o>d=c—odia—>b iff {abinfc,d}=0

The intuition here is that as long as the endpoints involved
in two communications do not overlap, the set of allowed
executions does not change if you flip a sequential compo-
sition. Combined with associativity of sequential composi-
tion, choreographies allow significant reordering of com-
munications.

Endpoint projection Choreographies define the endpoint
projection operator [-],, which accepts a choreography and
an endpoint e, and generates code that executes the chore-
ography from the perspective of e. To define this operator,
we first need to define the imperative language the end-
point projection generates code for:

e,a,b : := endpoint names

s::=s;sIsendelrecvel skip | s|s

Again, e, a and b are symbolic endpoint names. The state-
ments of the imperative language are elements of s: sequen-
tial composition of two statements, sending to an endpoint,
receiving from an endpoint, the skip statement and paral-
lel composition of two statements. The parallel composi-
tion interleaves execution of both statements, and finishes
when one of its subprograms reduces to skip.

We can now define the endpoint projection by pattern match-
ing on the choreography:

[e > a],=senda [a—e],=recva

[a— bl =skip  [Co;Cil, = [Col: [Ci],
[skip], = skip

Summarizing, if the argument e of the endpoint projection
occurs in the choreography term currently being matched,
a send or receive statement is returned, depending on the
position of e. If e does not occur in the term, the endpoint
projection returns a skip, meaning the actions involved with

2.4 VeyMont
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[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

8: While the presentation of lo-
cal choreographies in this sec-
tion differs from the work of Van
den Bos and Jongmans in terms
of syntax, the essence remains
the same.

the given choreography are not relevant for e. When pat-
tern matching choreographies against these equalities, we
assume that if the matched parts are equal, they are as-
signed to equal variables. For example, [Alex — Bob] ey
can only be reduced to “send Bob”. We also assume chore-
ographies have no self-communications (e.g. Alex — Alex).

We can now use the endpoint projection to generate the
imperative programs for Ex1, one for each participant:

[Ex1] ojex = send Bob; skip
[Ex1] g, = receive Alex; send Charlie

[Ex1]chariie = skip; receive Bob

Finally, the individual endpoint projections must be com-
posed in parallel to get an imperative implementation of
the input choreography:

[[EX]HAIex " [[EX”]Bob ” [[EX”]CharIie

We can now informally state the correctness criterion of
the endpoint projection: every execution allowed by the
parallel composition of endpoint projections, is also allowed
by the choreography, and vice versa.

For a formal treatment of the definition and semantics of
choreographies, and correctness of the endpoint projection,
we refer the reader to “Introduction to Choreographies” by
Montesi [105].

2.4.2 Verification

Van den Bos and Jongmans introduce a variant of chore-
ographies that support local actions, loops, and verifica-
tion [36, 80]. They do this by extending simple choreogra-
phies and its endpoint projection with additional primitives.
In this thesis we refer to this extension of simple chore-
ographies as local choreographies. They then show how the
choreography can be verified with VerCors. In this section
we will summarize the definition of local choreographies,
briefly explain how to verify them, and define the endpoint
projection.®



e,a,b ::= endpoint names

decl ::= --- | local choreography
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::= endpoint e= C(H);

communicate a.x -> b.y;
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Sep :::e.m(ﬁ); le.x := H;

Figure 2.15: PVL syntax extension for local choreographies

Syntax Figure 2.15 shows the syntax for local choreogra-
phies. It reuses syntactical elements of Fig. 2.9: R are re-
source expressions, possibly containing permissions, H are
heap-dependent expressions, x and y indicate symbolic field
names, and K refers to a contract.

Local choreographies are top-level declarations that are de-
clared at the same level as PVL classes. A local choreogra-
phy consists of a set of endpoints, as well as a run decla-
ration. Each endpoint is declared with a PVL class type C,
of which the constructor is used to initialize the endpoint.
Effectively, each endpoint is treated in expressions as be-
ing of type C. A run declaration consists of a contract and
a sequence of choreographic statements. A choreographic
statement can be an if, while loop, communication, or end-
point statement. An endpoint statement is either a method
call on an endpoint, or an assignment.

Endpoint statements differ from the other choreographic
statements in that they involve only one endpoint. For ex-
ample, the communication statement involves both a send-
ing and receiving endpoint.

A choreographic expression Hy,, is a sequence of n expres-
sions H; &&---&& H,,. Choreographic expressions have a well-
formedness condition: for each H;, only one endpoint may
be mentioned. In other words, if endpoints a and b occur in
H;, it must be the case that a = b. For example, assuming
a != b, the choreographic expressiona.x == 3 && b.y

loop_invariant R; while (Hggr) Schor
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== b.z is well-formed: the left-hand side contains only a,
while the right-hand side contains only b. In contrast, the
choreographic expression a.x == b.y is not well-formed,
as it contains both a and b. This property is important for
the endpoint projection, as it allows excluding parts of the
expression that are not relevant for the target endpoint.

Endpoint statements are similarly constrained: the expres-
sions H of an endpoint statement can only mention the end-
point e, which is fixed at the top-level of the endpoint state-
ment. This restriction ensures that each endpoint statement
only uses memory accessible to the endpoint.

To ensure deadlock freedom of local choreographies, there
is also a syntactic restriction over endpoints in branches.
Specifically, an endpoint can only appear within any branch
of an if if that endpoint also appears in the condition of
the if. If this is not the case, endpoints can get out of sync,
where one endpoint takes the true branch and the other the
false branch. If that happens, and communicate statements
are in either branch, this will result in a deadlock. This
restriction also applies to while loops. A semantic check
that is necessary for deadlock freedom is branch unanim-
ity, which is discussed in the next subsection.

Verification transformation To verify choreographies, we
define a translation from choreographies to the OOP frag-

ment of PVL. In this thesis, we refer to this type of transfor-

mation for choreographies as the choreographic projection,

written with the curly brace syntax {-.

The transformation rules for the choreographic projection,
{-B, for local choreographies are shown in Fig. 2.16. In rule
and entry point LCPLOCALCHOR a local choreography is
transformed into a method with name encodedChor, and
each endpoint into an instance of its corresponding class.
Each endpoint class instance is assigned to a local variable
with the same name as the endpoint, and initialized in order
of declaration. Then, the precondition of the run declara-
tion is asserted, after which the choreographic statements
are transformed and included. After all the choreographic
statements, the postcondition of the run declaration is as-
serted.



LcpLocALCHOR e
K. local_choreography(T v) {
Dep;
requires P; ensures Q; run { Sgor }

K. void encodedChor(ﬂ) {

1Dep}:

assert P;

{[Schor]};

assert Q;

}
LcPENDPOINT . LcpComMm
{[endpoint e = C(H);]}: {communicate a.x -> b.y;}=
Ce=new C(H); b.y = a.x;
Lcrlr

fif () s $¢] =
assert unanimous(H);

if (H) {8} {s/]

Figure 2.16: Choreographic projection rules for local choreographies

The choreographic equivalents of the statements if, while,
assignment and method invocation are rewritten to the ver-
sions in PVL as is. In addition, as shown in rule LcPIF, for
if and while, the branch unanimity condition is asserted
just before the statement. Similar to the syntactical condi-
tion over 1f and while, endpoints also need to agree on the
condition value, otherwise both branches could be taken
at run-time, risking a deadlock. In rule LcPIF, assuming
H = H, && - && H,, the function unanimous(H) constructs
the expression H; ==H, &&---&& H,_; ==H,,. This encodes the
condition Vi # j; H; == Hj, ensuring branch unanimity.

The communication statement is rewritten to a plain as-
signment to model the sending of a message (rule LcPCoMM).

The PVL method resulting from this encoding simulates
the behaviour of the choreography, and can be verified as-
is with VerCors. If an error is found, e.g. maybe a precon-
dition of a method call on an endpoint does not hold, this
error can be translated to an error at the level of the input
choreography in a straightforward manner.

2.4 VeyMont
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1 | local_choreography(boolean dir) {
2 endpoint alex = C(dir);

3 endpoint bob = C(dir);

4

5 run {

6 if (alex.dir && bob.dir) {

7 communicate alex.v -> bob.v;
8 } else {

9 communicate bob.v -> alex.v;
10 3

11 3

12 |3

(a) Input choreography

void encodedChor(boolean dir) {
C alex = new C(dir);
C bob = new C(dir);

assert alex.dir == bob.dir;
if (alex.dir && bob.dir) {
bob.v = alex.v;
} else {
bob.v = alex.v;

0 N W N =

Nl

0] 3
113
12

(b) After applying the choreographic projection

Figure 2.17: An example application of the choreographic projection, showing both the input and output

Local choreographic projection example Fig. 2.17 shows
both an input choreography in Fig. 2.17a, as well as the
encoded PVL output in Fig. 2.17b. There is a rough line-
by-line correspondence between the two listings, s.t. lines
on the right represent an encoding of lines on the left. The
simple condition of the if illustrates the usage of local state
of endpoints in branches.

Endpoint projection The endpoint projection generates
an implementation specialized for one particular endpoint.
It is written using the syntax [-],, where r represents the
endpoint that is currently being specialized for, the target
endpoint. The essential effect of the endpoint projection is
that it drops every statement that does not contain r, and
keeps the others.

Figure 2.18 shows the transformation rules for [],. Rule
LEPLOCALCHOR is the entry point of the projection. It
generates a method that contains the implementation of
the input choreography w.r.t. r, and recursively rewrites
the statements of the choreography using the endpoint pro-
jection. Note that the target endpoint is passed as an ar-
gument to the generated implementation. Creation of the
runtime representation r is done by additional supporting
code generated by VeyMont.

For choreographic statements, the general rule is that a
statement is included if the r appears in it. For if state-
ments, this amounts to including it if r appears in the con-
dition. If r does not appear in H, the skip statement is re-
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K. local_choreog raphy(T_v) {

Dep; =
requires P; ensures Q; run { Sgor 1}
} _ r
K.void impl r(Tv, C r) { [Sehorl, }
LePIF LEPSEND
reH [L: communicate r.x -> a.y;], =
[if (H) S sf]]r: [L], .writevalue(r.x)

if ([H],) [s], [Sf],

LEPRECEIVE

[L: communicate a.x -> r.y;], =

r.y = [L],.readvalue()

Figure 2.18: Endpoint projection rules for local choreographies

turned (rule omitted). This is similar for the rules for while,
method invocation and assignment.

Projecting communicate requires two rules. One rule ap-
plies when r is in the sending position, rule LEPSEND. In
this rule, a call to writevalue is generated, which ensures
the value r. x is written into the appropriate channel. To ac-
quire an instance of the channel, we use the notation [L],,
which returns the appropriate instance of channel axiomat-
ically. As part of the supporting code generated, VeyMont
also generates a channel for each communicate statement,
which is passed by reference to each corresponding sender
and receiver. This is out of scope for the formal definition
of the endpoint projection, but further discussed in Chap-
ter 5, [36] and the example in the next paragraph. Rule
LEPRECEIVE is symmetric to rule LEPSEND, and if nei-
ther rule applies, the skip statement can be returned (rule
omitted).

Local endpoint projection example Figure 2.19 shows
the local endpoint projection for the choreography in Fig. 2.17a
for target endpoint alex. Notice how, besides the boolean
dir argument and the object instance representing alex,

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs
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1 | void impl_alex(boolean dir, C alex, Channel alex_bob, Channel bob_alex) {
2 if (alex.dir) {
3 alex_bob.writevalue(alex.v);
4 } else {
5 alex.v = bob_alex.readvalue();
6 }
713

Figure 2.19: Output of the local endpoint projection of the choreography in Fig. 2.17a for target endpoint alex

also two other arguments are added. These are the chan-
nels that implement the two communicate statements in
the choreography. Code to initialize the object instance for
alex is not included in this listing, as it is an implemen-
tation detail; VeyMont does generate code for this. Finally,
notice how the condition for the if only includes the part
of the condition that is relevant for alex.



Formal Methods in
Industry

Despite successful application of formal methods in indus-
try, uptake is still limited. To better understand the gap
between mental models of engineers and formal methods,
this chapter presents a case study where a concurrent mod-
ule of a tunnel control system written in Java is verified
for memory safety and data race freedom using VerCors, a
software verification tool. This case study was carried out
in close collaboration with our industrial partner Techno-
lution, which is in charge of developing the tunnel control
software. First, we describe the process of preparing the
code for verification, and how we make use of the differ-
ent capabilities of VerCors to successfully verify the mod-
ule. The concurrent module has gone through a rigorous
process of design, code reviewing and unit and integration
testing. Despite this careful approach, VerCors found two
memory related bugs. We describe these bugs, and show
how VerCors could have found them during the develop-
ment process. Second, we wanted to communicate back our
results and verification process to the engineers of Tech-
nolution. We discuss how we prepared our presentation,
and the explanation we settled on. Third, we present inter-
esting feedback points from this presentation. We use this
feedback to determine future work directions with the goal
to improve our tool support, and to further narrow the gap
between formal methods and industry.

This chapter is based on “On Deductive Verification of an Industrial
Concurrent Software Component with VerCors” by Monti, Rubbens, and
Huisman [106], published at ISoLA 2022.
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3 Formal Methods in Industry

3.1 Introduction

Software components for critical infrastructure should be

kept to the highest standards of safety and correctness. Tra-
ditional methods for acquiring high safety standards in-
clude code reviewing and testing. These improve the re-
liability of software, but do not and cannot guarantee the

absence of bugs. Software is also becoming more concur-
rent every year. The number of execution scenarios in con-
current software is even greater than in classical sequen-
tial software, due to interleaving and timing aspects. This

makes code reviewing and testing even less effective. Specif-
ically, there are too many interleavings of multiple threads,

causing problematic interleavings to easily be missed dur-
ing code reviewing and testing. Furthermore, concurrency

related bugs such as data races and race conditions are in-
trinsically difficult to analyse with testing, since their ef-
fects are platform dependent. For example, changing the

OS of the system could cause previously passing tests to

fail, due to different scheduling policies. It is also hard to

test for specific interleavings. Hence, methods besides test-
ing and code reviewing are needed to achieve the high-
est standards of safety and correctness in concurrent soft-
ware.

To complement classical methods in the context of concur-
rent and critical infrastructure software, we believe formal
methods must be considered. In particular, formal methods
that can deal with the concurrent context must be used.
In contrast to code review and testing, formal verification
is exhaustive and can formally guarantee the absence of
bugs in different stages of the software development cy-
cle. Moreover, formal verification uses a standard seman-
tics of the language in question, which guarantees consis-
tent behaviour across platforms. Whenever platforms dis-
agree, formal verification ensures that this difference is ac-
counted for in the code. These properties of formal verifica-
tion makes software more predictable, and hence safer.

Despite recent advances in software verification capabili-
ties, the use of formal methods in industry is still limited.
We think that case studies that show the successful appli-
cation of formal methods will greatly contribute towards
further adoption of formal methods in industry in several



ways. First, it showcases the advances and capabilities of
software verification tools to our industrial partners. Sec-
ond, it generates valuable feedback, with which we can im-
prove our tools and further adapt them to the software pro-
duction cycle. This feedback is also instrumental in bring-
ing the interfaces that formal methods tools provide closer
to the mental models of engineers working in industry. Third,
case studies like this improve our understanding of the im-
plementation gap in the context of formal methods applied
in industry. The implementation gap occurs when there is
still some conceptual discrepancy between the model that
is analysed using a formal method, and the actual system
the formal model is supposed to represent. This work dis-
cusses such a case study, where we verify a safety critical
software for tunnel traffic control using our software veri-
fication tool VerCors.

VerCors is a deductive verifier, specialised in the verifica-
tion of concurrent software [13]. It supports the languages
Java, C, OpenCL, and a custom input language called PVL,
and can prove several useful generic properties about pro-
grams, such as memory safety and absence of data races.
VerCors can also prove functional correctness properties,
such as “the sum of all integers in the array is computed”.
To verify programs with VerCors, the programs must be an-
notated by the user, following a Design by Contract like ap-
proach. Annotations are pre- and post-conditions of meth-
ods, specifying permissions to access memory locations and
functional properties about the program state. VerCors pro-
cesses the program and the annotations, and verifies if the
program adheres to the annotations by applying a deduc-
tive program logic optimised for reasoning about concur-
rent programs. VerCors has been applied to concurrent al-
gorithms [121, 142, 143], and also to industrial code in ear-
lier case studies [74, 120]. For more information about the
VerCors tool, see Chapter 2 or Armborst et al. [13].

This chapter is the result of a close collaboration with Tech-
nolution [151], a Dutch software and hardware develop-
ment company located in Gouda, the Netherlands, with a
recorded experience in developing safety-critical industrial
software. It is also the next part in a line of work to investi-
gate the feasibility of applying formal methods within the
design and production process of Technolution. For more
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information on the earlier parts, we refer the reader to [74,
120]. Finally, this chapter is also an attempt to approach in-
dustrial partners to collaborate on the broader goal of mak-
ing deductive verification, and specifically VerCors, avail-
able for industrial practitioners. This collaboration is car-
ried out in the context of the VerCors Industrial Advisory
Board, with the goal to learn how to introduce deductive
verification into the production cycle of software, and to
improve the tool and make it easier to use. Another im-
portant goal of the VerCors Industrial Advisory Board is
to make industrial partners aware of the guarantees of for-
mal verification, in contrast to the weaker guarantees of
testing based quality assurance. This chapter discusses our
efforts to communicate our results and explain the verifi-
cation process to the engineers at Technolution, as well as
their feedback on our approach.

In particular, we discuss the verification of software for a

tunnel on a road called the Blankenburgverbinding [25].
This tunnel and the hard- and software supporting it will be

responsible for funnelling thousands of cars every day. The

control software of this tunnel monitors and controls al-
most every aspect of the tunnel, in both normal and calamity
situations. Thus, in order to give some safety guarantees

to its daily users, it is highly important that the software

conforms to the requirements of the national regulations

and to the specifications provided by the engineers who

design and develop it. To demonstrate how formal meth-
ods can help here, we applied our software verification tool

VerCors to a submodule of the control software of the tun-
nel, in particular to analyse concurrency related issues such

as data races and memory safety.

To develop the tunnel software, Technolution followed an
iterative V-model approach. The customer handed in the
requirements in form of the Basic Specification of Techni-
cal Installations for Tunnels (BSTTI') [90] and LTS spec-
ifications. These were used to derive actual software re-
quirements via system decomposition and design. In ad-
dition to the custom validation flow of the V-model, the
customer also imposed requirements on the development
process. These included, but were not limited to, units be-
ing inspected to verify that they implement their require-
ments via Fagan inspection performed by a developer not


%5Curl%7Bhttps://www.blankenburgverbinding.nl/%7D
https://standaarden.rws.nl/link/standaard/6080-1-0

involved in creation and review of the code, requirements-
based testing at software module level (i.e. higher integra-
tion level than units) using the MC/DC coverage approach,
and Ul-design based testing at a software chain level (i.e.
integration of multiple systems) with a process flow ap-
proach.

This rigorous approach to software development resulted
in them spotting some unexpected behaviour in their tun-
nel software, where a certain condition over the state snap-
shot of a component was evaluated differently at two spots
throughout which the snapshot should remain unchanged.
Nevertheless, later they could not reproduce this behaviour
and, by the time we were given the code to analyse, they
had not been able to spot a bug that might explain this be-
haviour. The code we received was already in testing phase.
As can be seen in this chapter, we discovered concurrency
related bugs in this code, which we think were likely the
cause of the unexpected behaviour. We show that VerCors
can effectively catch this kind of bugs, in production phase,
by using simple code annotations in the form of methods
pre and post-conditions specifying the memory access pat-
tern of such methods.

The goal of this particular study is three-fold. First we want
to investigate how much we can support the verification
of industrial Java software with VerCors. Second, we want
to focus this time on a concurrent piece of software and
on concurrency issues such as data races, for which our
tool is specialised. Notice that to exploit modern architec-
tures, modern software is often concurrent, and not many
deductive verification tools can deal with this. Third, we
want to investigate how our verification procedure can be
improved for industrial adoption. For this, we are partic-
ularly interested in the feedback from the Technolution

team with respect to the verification procedure we followed.

Contributions In this chapter we discuss the following:

» Details of the tunnel verification case study, such as
the analysis workflow and the problems we discov-
ered.

» The process of communicating our results to Techno-
lution.

3.1 Introduction
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Figure 3.1: Informal overview of
the architecture specified by the
BSTTL
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» The feedback from Technolution and its engineers re-
garding our analysis and our presentation of it.

» Future plans for VerCors and the analysis of concur-
rent industrial software.

Outline Section 3.2 presents the background for this re-
search, i.e., we describe the tunnel software and architec-
ture. In Section 3.3 we discuss our process of verification of
the concurrent data manager module, we explain the bugs
we spotted, and we show how applying VerCors would
have avoided these bugs. Section 3.4 describes the experi-
ence of explaining our procedure and reporting our results
to the engineers at Technolution, and their feedback. Sec-
tion 3.5 describes our own reflection and future directions
towards our goal of improving VerCors for industrial appli-
cation. Additionally, we mention some broader goals for
the formal methods community. Finally, Section 3.6 sum-
marises and concludes.

3.2 Tunnel System Architecture

In the Netherlands, the architecture of software for tunnels
is regulated by the BSTTI [90]. It specifies that the architec-
ture for tunnel software is strictly hierarchical. The system
is summarised in Figure 3.1.

At the top layer of this hierarchy are the human operators
that operate the system. These operators give commands
to the system, and inspect the values of various sensors
in the system, using the Human-Machine Interface (MMI?)
layer. The MMI processes these commands and forwards
these to components of the Control, Instruct, Guard (3B3)
layer. The 3B layer and its components are responsible for
the high-level control of the physical subsystems of the tun-
nel. Examples of 3B components are water drainage, light-
ing, and electricity systems. As 3B components can be re-
sponsible for controlling entire subsystems, they also have
a degree of autonomy. The individual 3B elements commu-
nicate with components in the Logical Function Fulfiller
(LFV*%) layer. Components in the LFV layer abstract the
communication with the sensors and actuators of the tun-
nel to check and control them. Examples of these sensors
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and actuators are the smoke sensors and fans, the lights, or
the entrance barriers. They can be located at various places
in the tunnel and are connected to their LFV counterparts
over various kinds of network connections following dif-
ferent protocols

According to the BSTTI [90], the system must follow these
general principles:

» Control must flow from the human operator level to
the LFV level.

» Communication must take place along the parent-
child hierarchy outlined in Figure 3.1. Specifically,
sideways communication between neighbouring 3B/LFV
components, or between 3B components and LFV com-
ponents that have no parent-child relation, must not
take place.

These principles were prescribed because they make ac-
tions taken by the system traceable. If the physical system
takes a certain action, the strict hierarchy allows tracing
back to which component or decision caused the action.
Note that it might not always be a human who caused the
action. Since 3B components can have a degree of auton-
omy, it is possible that an autonomous action causes a phys-
ical action to take place.

3.3 Verification of the Concurrent
Data Manager Module

When discussing our plans for collaboration with Techno-
lution, the engineers suggested as a case study their new
control software for the Baak tunnel. For this tunnel, they
have developed a system that is responsible for control-
ling and reporting on all critical and non-critical compo-
nents, such as escape doors, fire-prevention measures, wa-
ter drainage systems, lighting, ventilation, etcetera. In or-
der to reduce the time spent in spotting a concurrent candi-
date module to analyse, we agreed to meet a first time with
an engineer, experienced with the tunnel software, who
could guide us through it.
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Figure 3.2: The 3B function pro-
cessing event loop.
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In this first meeting the engineers from Technolution not
only suggested a set of modules to verify, but also pointed
out a problem that they would like us to consider, since it
was most likely a concurrency issue. The system they had
built at that point was functional, behaved properly, and
passed all tests. However, sometimes, according to their
data logs, certain status data would unexpectedly change
during execution of the system. These unexpected changes
were never problematic in realistic scenarios, so therefore
they considered it benign. However, it was still unexpected,
and they would like to understand why this happens.

As a first step, we decided to go through the code base
and try to understand the structure. We used a couple of
meetings with the Technolution team to get some guid-
ance around the code. Also, several times we asked for fur-
ther code to inspect, such as supporting libraries of the sys-
tem.

We found that the components of a tunnel can be quite di-
verse, and to cope with that diversity, several layers of ab-
straction and interfacing code had been built into the tun-
nel software, which made it non-trivial to understand for
us. Nevertheless this was not a problem for our verifica-
tion approach, as it is modular at the level of methods, and
annotating the code was straightforward. We ran VerCors
on the fly, while annotating the code, and even mocked
some library calls, by means of abstract methods and ghost
code. We did have problems with VerCors lacking support
for some frequently used Java features, such as inheritance
and generics. Once we decided on the module to verify, the
effort to abstract from unsupported Java features and anno-
tate the code was very little; the annotations were trivial
to us, and it took just an afternoon to reach the conclu-
sions. Moreover, due to the simplicity of the specification,
VerCors was able to verify the code in just a couple of sec-
onds.



3.3 Verification of the Concurrent Data Manager Module

3.3.1 Event Loop Analysis

We inspected the event loop of the main module, because
most of the concurrent behaviour happens there. This in-
volved peeling off the abstraction layers of the event loop
framework, which is responsible for receiving and dispatch-
ing messages and executing each step of the processing
loop of 3B components. This process repeats until the main
module is shut down. An illustration of the typical pro-
cessing loop of a 3B function can be found in Figure 3.2.
A processing loop starts by obtaining the state of all the
child components for this 3B function (first rectangle in
the figure). This state is then used to take control decisions
along several processing steps inside the loop (shaded rect-
angles in the figure). It is here that the Technolution en-
gineers where suspecting that something is wrong. In par-
ticular, during this control decision period, this state must
not change. The suspicion was that somehow the state was
being changed.

Continuing the explanation of Figure 3.2, at the end of the

loop our own state is prepared and made available to the up-
per 3B functions in the hierarchy (see Figure 3.1 for clarifi-
cation). In general, 3B functions and LFV components work

asynchronously. The communication of the state between

LFVs and 3B functions is managed by specialised data man-
agers which need to synchronise the state of these asyn-
chronous elements at the start and end of the 3B function

processing loop. In a generic data manager of the event

loop framework, we were able to spot two problems through
manual inspection of the source code.

Problem 1:forbidden data sharing The first problem was
related to aliasing between references to data structures
representing the status of the child components of a 3B
function. To better understand this, let us look at Figure 3.3:
each 3B function uses two copies of the data structure rep-
resenting the status of its child LFVs and 3B functions. One
of these copies, the “internal” copy, represents the internal
knowledge that a 3B function has of its children. It is used
by the 3B function processor to make control decisions and
should remain unchanged during the time of a processing
loop iteration, this is, along the shaded steps in Figure 3.2.
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shots.

On the other hand, the “dynamic” copy is updated each
time a status update message from a child component is
received. These messages arrive at any point during a pro-
cessing loop iteration and the updates are asynchronously
applied. At the end of an event iteration, the dynamic copy
is used by the data manager to update the internal copy.

It turns out that the data manager accidentally aliased both
the internal and the dynamic copies. This is a simple but
common mistake, and in line with the expectations of the
Technolution engineers. The internal copy would then change
midway through a processing loop iteration whenever the
dynamic copy would receive an update.

As a verification exercise, we decided to annotate the data
manager module in order to demonstrate how we could
have avoided this mistake by using VerCors. Actually, we
simplified the module for the sake of focusing on the inter-
esting aspects, and to avoid incompatibilities with our cur-
rent support of the Java language. We further discuss this
in Section 3.5. As we expected, it turned out to be straight-
forward to rule out this mistake. Figure 3.4 shows a simpli-
fication of the actual aliasing bug and the annotations we
used. Lines 9 and 10 are the preconditions specifying that
we need permissions to write on internal and its field
value while we need to be able to read dynamic and its
field value. Our postconditions, at lines 11 and 12, spec-
ify that these permissions should also be returned to the
caller. We specify permissions to each of them separately,
using the separation conjunction (**), since they should
correspond to two different data structures.

At line 16, dynamic is assigned to internal. Therefore,
internal.value and dynamic.value represent the same
memory location. At this point VerCors complains about
our postcondition. Figure 3.5 shows the VerCors output for
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class Data{
int value;
}
class Manager{
Data internal;
Data dynamic;
//@ requires Perm(internal, write) ** Perm(dynamic, read);
//@ requires Perm(internal.value, write) ** Perm(dynamic.value, write);
//@ ensures Perm(internal, write) ** Perm(dynamic, read);
//@ ensures Perm(internal.value, write) ** Perm(dynamic.value, write);
void sync() {
internal.value = dynamic.value;
internal = dynamic;
}
}

Figure 3.4: Ruling out aliasing with VerCors

this faulty case. The error message
PostConditionFailed:InsufficientPermission

at line 11 indicates that we are missing permissions to ac-
cess a memory location. The brackets and dashes at lines 5
and 7 indicate where the problem lies: we do not posses
the amount of permission we want to ensure in the second
half of line 12 of our code. In fact, we already gave up all
the permission we had on this memory location through its
alias, in the first half of the same postcondition line. After
VerCors indicates something is wrong, the user must find
out why this is the case and spot the undesired aliasing.

After analysing this bug with the engineers involved in our
case study, we concluded that this aliasing would likely
have been the reason of the unexpected behaviour they
had detected. It apparently had not affected the overall be-
haviour of the system, but the reason why such a bug did
not extend into a serious fault was not clear. The enormous
amount of execution scenarios due to interleaving and tim-
ing aspects also makes it difficult to reproduce the imme-
diate effects of this bug. The bug should be fixed since we
cannot exclude that it may, under certain circumstances,
trigger a major fault in the tunnel control system.

Problem 2: internal data leakage A second bug was spot-

ted while annotating this module for verification with VerCors.

Another method of the module was leaking a reference to a
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=== Manager.java
//@ requires Perm(internal.value, write) ** Perm(dynamic.value, write);
//@ ensures Perm(internal, write) ** Perm(dynamic, read);
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//@ ensures Perm(internal.value, write) ** Perm(dynamic.value, read);

void sync() {

internal.value = dynamic.value;

PostConditionFailed:InsufficientPermission

Manager . java

//@ requires Perm(internal.value, write) ** Perm(dynamic.value, write);
//@ ensures Perm(internal, write) ** Perm(dynamic, read);

//@ ensures Perm(internal.value, write) ** Perm(dynamic.value, read);

void sync() {

internal.value = dynamic.value;

o]

aused by

The final verdict is Fail

Figure 3.5: VerCors output for alias spotting

class Manager{
private Data internal; // protected_by(this)

}

synchronized Data get_internal() {

}

return internal;

Figure 3.6: Reference to private data leakage

private field of the class. Figure 3.6 illustrates this case. This
is not harmful on its own, but it is usually considered bad
practice. This may unintentionally allow a user of this class
to concurrently access the field without following its syn-
chronisation regime, which may result in a data race. Per-
mission annotations in VerCors will not disallow acquiring
the reference, but the annotations will ensure that there is
no way to access any fields of this reference without hold-
ing the necessary permissions. This restriction rules out
any data races.

3.3.2 Discussion on the Discovered Bugs

The two bugs we found are typically overlooked by testing
and manual inspection: their effects are triggered by very
specific combinations of timings and interleaving that are
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too complicated to cover by test cases. A manual inspection
may mistakenly consider these usages to be safe, or over-
look them while searching for functional behaviour bugs
instead of memory safety.

The effects of these bugs in a deployed system might be
dangerous as it is hard to claim they do not cause incor-
rect behaviour. To prove that they do not cause incorrect
behaviour, one would have to consider all possible inter-
leavings of the processes of the system. The difficulty of
this inspection increases exponentially when the number
of concurrent processes and timing factors increases. In
other words, proving that the system is not affected by the
bugs by manual inspection is untractable.

Fortunately, the memory bugs we found are detectable with
VerCors, by annotating methods in a straightforward man-
ner with the permissions they require/ensure for the fields
that they read/modify. An example of this can be found in
the the pre- and post-conditions of Figure 3.4. These anno-
tations are made compulsory by the tool, meaning that if
they are not there the tool will terminate with an error. If
verification succeeds, then VerCors guarantees that there
is no data race in the code.

3.4 Results Presentation

In this section we describe our preparation process and pre-
sentation of the results to the larger team of engineers at
Technolution, which included a broader group than just
those involved in the case study. We also describe our im-
pressions of the final presentation and discuss the most in-
teresting feedback points from the audience.

3.4.1 Design Process

After the case study was analysed by hand and translated
to VerCors, we wanted to present our findings to a big-
ger audience of engineers at Technolution. However, we
had experienced in former meetings with the Technolu-
tion team that we had not been able to effectively explain
what VerCors checks, and how to annotate programs for
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VerCors. Therefore, we agreed to be careful and first present
the results only to the Technolution team involved in the
case study.

It turned out the initial presentation had several shortcom-
ings, which we discuss here, because we think they provide
important general insights.

First, the initial presentation tried to explain several useful
verification concepts. For example, it discussed the benefits
of fractional permissions, compared to non-splittable own-
ership tickets. It also discussed the difference between an-
notating only for memory safety, and annotating for func-
tional properties as well. This was done to show how we
use VerCors. However, without a formal methods background,
the explanation of these tradeoffs is hard to follow. Addi-
tionally, most of these concepts are not necessary in order
to explain the basis of our approach to verification of mem-
ory safety. The solution was to only focus on this basis,
which is: annotating code with permissions.

Second, the examples used in the initial presentation com-
bined orthogonal concepts to make the examples non-trivial.
While engaging for experts, we found out that this is bad
for teaching how an approach works. This is especially rel-
evant in the context of a presentation, where the audience
needs to understand the slides quickly and explanations
need to be short. The solution is to make the examples more
targeted. Even when discussing the fundamental basis of
our verification approach, each example should only high-
light the one relevant aspect of it. For instance, our final
presentation contained a code example that had exactly one
error. The code example on the next slide added exactly one
annotation, consisting of only one permission, to resolve
the error. Additionally, examples from the initial presenta-
tion were split up such that each sub-example fit on one
screen with a large font. With each example presented in
isolation and using as few lines of code as possible, they
were also easier to understand.

Third, some of the examples in the initial presentation con-
tained concerns unrelated to verifying concurrency, such
as division by zero and rounding. The solution was to en-
sure that no concerns appear in the example that are un-
related to concurrency or memory safety, since we experi-
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enced that this would deviate the attention of the audience
to topics we are not interested in discussing.

For the particular case of Technolution, we found out that
it was useful to compare our approach with the Rust lan-
guage, which was familiar to them [100]. This was actually
suggested by the Technolution side during our presenta-
tion preparation meetings. We also took care with how we
phrased certain concepts. Since there might be a difference
between what we regard as a permission and what an en-
gineer regards as a permission, we had to ensure this was
not a problem from the beginning.

Finally, we made sure to clarify that we do not execute the
code, but logically analyse it. For this, we compared it to
making a pen and paper proof. This is needed to step away
from the usual runtime verification approach of unit and
integration testing.

To summarise, we learned that a “good” formal methods
presentation to a non-formal audience should have at least
the following properties:

» Introduce only key concepts of the formalism in ques-
tion that are actually needed to understanding the
basic idea of the formalism.

» Examples should present only one new concept at a
time. Combining orthogonal concepts into one exam-
ple is not helpful.

» Examples must be short, to ensure they fit on one
slide, can be interpreted quickly by the audience, and
also be explained quickly by the presenters.

» Examples must not contain unrelated concerns. The
domain of the audience might introduce concerns the
presenters are not aware of. Therefore, experts in the
domain of the audience should be asked beforehand.

» Determine concepts the audience is already familiar
with, and draw parallels between those and the con-
cepts in the presentation. However: take care that the
audience does not take this analogy too far, to avoid
misunderstanding. Avoiding reuse of terms from the
audience domain can help.

Additionally, our overall approach consisted of several it-
erations of refining the presentation using feedback of the

[100]: Matsakis et al. (2014), The
Rust language
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smaller group. We think this helped us to narrow down
what the Technolution engineers would most likely be in-
terested in, what information would benefit them, and what
information could be safely discarded from the presenta-
tion. It also helped us to agree on the proper language to
transfer this knowledge. The drawback of this approach is
that it is time consuming, because the presentation had to
be presented twice before the final presentation. Further-
more, the feedback had to be documented by Technolution,
and also had to be processed by us. Nevertheless, we think
that this process will be quicker next time, due to reusing
lessons learned in this case study.

3.4.2 Lessons Learned

During and after the final presentation, several questions
were asked and comments were made, both by the presen-
ters and the audience. We have collected the most insight-
ful and applicable ones below.

Testing exceeds verification in short term gains Dur-
ing the presentation it was mentioned that some teams
do not even use testing to its fullest. We agree with the
observation that it is more beneficial for most projects to
first test 80% of their code base, before starting to consider
formal verification. Additionally, there are formal meth-
ods to enhance and/or multiply the testing effort. Some ex-
amples are generation of test cases, mutation testing and
QuickCheck-like testing [47, 78, 153].

Annotation & specification culture Speaking from the
experience of the Technolution engineers, it is impossible
to ask engineers to write the annotations needed to use
VerCors, or formal verification tools in general. Engineers
do not even write comments that you would like to have in
the general case. Therefore, there is a big gap between the
annotations engineers are willing to write, and what verifi-
cation tools require. This can be improved upon by the for-
mal verification tools, by having smarter tools, generating
some annotations, having design shorthands, and setting
effective defaults. But, the difference is so big, that to adopt
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formal verification tools widely, there also needs to be a
culture shift about commenting and annotating code.

Similarities to Rust Most engineers have heard of or worked
with Rust. Verification tools can exploit this to lower the
barrier for using verification tools, and make them more
easily understandable and adoptable.

Optimise for the common case Related to Rust, an ap-
proach that the engineers thought could be useful to ver-
ification tools is the “optimise for the common case” ap-
proach. In this approach, tools optimise for the use case
that is most common in practice. For exceptional or un-
safe use cases, alternative syntaxes and escape hatches are
added. Usually, these alternative syntaxes are also more
verbose, making non-standard code also visually distinct.
Furthermore, the general case should be safe and hard to
get wrong. If applied successfully, we expect that the us-
age of this approach could reduce the amount of annota-
tion needed for verification, improve the readability and
decrease the unwillingness of the programmer to follow
the verification path.

Library calls Some engineers expressed concerns about
not having contracts for libraries that a team uses. It is true
that if a library has no contracts, someone needs to write
them. However, it is not a problem that the source of the li-
brary is not available due to modular verification, which al-
lows methods to be verified without considering the imple-
mentations of other methods. Instead, only the contracts of
other methods are necessary. Additionally, there are ways
to reduce friction caused by these missing contracts. For ex-
ample, it is possible to create a central database of library
contracts. For cases where the specification for a library is
not in the database, the specification language could offer
syntax for defining contracts for a library separately.

Why not use automatic static analysis tools instead? An
engineer pointed out that he had some experience with var-
ious static and automatic analysis tools. They raised the

valid question of why code should be annotated for VerCors,
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when there are tools that can spot memory bugs without
annotations. Some examples of such tools are Klocwork [85],
FindBugs [61], Coverity [50] and SonarQube [146]. Our an-
swer to this question is that these kind of static analysis
tools are not verification tools. Instead, they do a “best ef-
fort” analysis to find patterns that may relate to bugs. This
means such tools are not exhaustive, and can report false
positives and warnings which have to be manually inspected.
Verification tools, in contrast, give strong formal guaran-
tees on the validity of the queried property over the anal-
ysed system. In other words, given a specification that faith-
fully models the desired behaviour, false positives are rare.

Additionally, code analysis tools often can be used in tan-
dem. Therefore, we think it can be beneficial for teams to
use tools with different purposes at different stages of de-
velopment, or even simultaneously. This way the quality
of the final product can be maximised.

3.5 Future Research

Future research for the VerCors team will go in several di-
rections.

One direction of research is to reduce the number of anno-
tations required before VerCors can be used. Currently, if
there are no annotations in the code, VerCors cannot make
any assumptions about the code. However, for industrial
code, simple assumptions are often correct. For example,
two fields on one object usually do not contain the same
reference. We expect that it will cost less effort to annotate
for the exceptions of the previous rule, than to annotate
wherever it applies. Additionally, research is already being
done to see if some of the required annotations can be gen-
erated instead.

Another direction of research is to improve the support of
VerCors for Java features such as inheritance and generics.
Currently a manual translation to a subset of Java is neces-
sary to verify industrial Java code with VerCors, however
efforts are being made to improve the support [130, 145].

Finally, we think future research of the formal methods
community as a whole should be about designing simpler
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specification languages which are closer to the concepts
and models of software development teams. We found that
the semantics of our specification terminology is distant
from the intuition of the engineers. The understandability
of specification languages is a common problem in the for-
mal verification community. For example, consider Linear
or Branching time logics [87], p-calculus [38] and other al-
gebras commonly used to specify designs in model check-
ing. The learning curve of these languages is too steep and
they become impractical for the daily use of a software en-
gineer. Therefore the next step has to be one of effective re-
duction: reducing the expressive power of these languages
down to a level where they can be easily understood, while
retaining enough power to check properties that are of in-
terest to the engineers. Progress is already being made on
this with languages such as SALT [19] and Sugar [21], and
all the work surrounding the Bandera Specification Lan-
guage (BSL) [49].

3.6 Conclusion

We have applied VerCors to a submodule of tunnel con-
trol software. This software contained a known benign but
unexpected runtime behaviour, which lacked an explana-
tion. Through manual analysis, a bug and a weakness were
found, one of which is a possible explanation of the un-
expected runtime behaviour. We have communicated our
results to the Technolution team and the Technolution en-
gineers through a carefully prepared presentation that un-
derwent multiple feedback rounds from the Technolution
team. This allowed us to focus on the information that is
most useful to the engineers, and leave out the information
that is not directly necessary.

The results of this presentation are suggestions and insights
from the engineers of Technolution. For example, it was
suggested that there are similarities between Rust and our
annotations which VerCors can exploit. It was also sug-
gested that there should be support for easily modelling
contracts of software libraries. Another observation we have
made is that there is a large gap between the annotations
that must be written to apply VerCors, and the maximum
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amount of annotations engineers are typically willing to
write. There was also an observation from an engineer that,
in the short term, proper testing practices yield more ben-
efits than formal verification does in the short term.

Finally, we have discussed future directions for our work,
such as implementing assumptions about the typical struc-
ture of industrial Java code in VerCors, as well as adding
more extensive support for the Java language in VerCors.
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Towards Verified
Concurrent Systems in
Java

To narrow the gap between software design and formal
methods, we present “Verified JavaBIP”, a tool set for the
verification of JavaBIP models. A JavaBIP model is a Java
program where classes are considered as components, their
behaviour described by finite state machine and synchro-
nization annotations. While JavaBIP guarantees execution
progresses according to the indicated state machines, it does
not guarantee properties of the data exchanged between
components. It also does not provide verification support
to check whether the behaviour of the resulting concurrent
program is as (safe as) expected. This chapter addresses this
by extending the JavaBIP engine with run-time verification
support, and by extending the program verifier VerCors to
verify JavaBIP models deductively. By combining the two
formal methods VerCors and JavaBIP, we narrow the im-
plementation gap that exists between the design phase of
software development and deductive verification of Java
programs. This is beneficial because the two techniques
complement each other: feedback from run-time verifica-
tion allows quicker prototyping of contracts, and deduc-
tive verification can reduce the overhead of run-time ver-
ification. We demonstrate our approach on the “Solidity
Casino” case study, known from the VerifyThis Collabora-
tive Long Term Challenge.

This chapter is based on “JavaBIP meets VerCors: Towards the Safety of
Concurrent Software Systems in Java” by Bliudze, Van den Bos, Huisman,
Rubbens, and Safina [27], published at FASE 2023.
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4.1 Introduction

Modern software systems are inherently concurrent: they
consist of multiple components that run simultaneously
and share access to resources. Component interaction leads
to resource contention, and if not coordinated properly,
can compromise safety-critical operations. The concurrent
nature of such interactions is the root cause of the sheer
complexity of the resulting software [29]. Model-based co-
ordination frameworks such as Reo [10] and BIP [17] ad-
dress this issue by providing models with a formally de-
fined behaviour and verification tools.

JavaBIP [30] is an open-source Java implementation of the
BIP coordination mechanism. It separates the application
model into component behaviour, modelled as Finite State
Machines (FSMs), and glue, which defines the possible state-
less interactions among components in terms of synchroni-
sation constraints. The overall behaviour of an application
is to be enforced at run time by the framework’s engine.
Unlike BIP, JavaBIP does not provide automatic code gener-
ation from the provided model; instead it realises the coor-
dination of existing software components in an exogenous
manner, relying on component annotations that provide an
abstract view of the software under development.

To model component behaviour, methods of a JavaBIP pro-
gram are annotated with FSM transitions. These annotated
methods model the actions of the program components.

Computations are assumed to be terminating and non-blocking.

Furthermore, side-effects are assumed to be either repre-
sented by the change of the FSM state, or to be irrelevant
for the system behaviour. Any correctness argument for
the system depends on these assumptions. A limitation of
JavaBIP is that it does not guarantee that these assumptions
hold. This chapter proposes a joint extension of JavaBIP
and VerCors [13] providing such guarantees about the im-
plementation statically and at run time.

VerCors is a state-of-the-art deductive verification tool for
concurrent programs that uses permission-based separa-
tion logic [7]. This logic is an extension of Hoare logic that

allows specifying properties using contract annotations. These



contract annotations include permissions, pre- and post-
conditions and loop invariants. VerCors automatically veri-
fies programs with contract annotations. For more informa-
tion about VerCors, see Chapter 2 or Armborst et al. [13].

To verify JavaBIP models, we (i) extend JavaBIP annota-
tions with verification annotations, and (ii) adapt VerCors
to support JavaBIP annotations. VerCors was chosen for in-
tegration with JavaBIP because it supports multithreaded
Java, which makes it straightforward to express JavaBIP
concepts in its internal representation. To analyze JavaBIP
models, VerCors transforms the model with verification an-
notations into contract annotations, leveraging their struc-
ture as specified by the FSM annotations and the glue.

For some programs VerCors requires extra contract anno-
tations. This is generally the case with while statements
and when recursive methods are used. To enable proper-
ties to be analysed when not all necessary annotations are
added yet, we extend the JavaBIP engine with support for
run-time verification. During a run of the program, the ver-
ification annotations are checked for that specific program
execution at particular points of interest, such as when a
JavaBIP component executes a transition. The run-time ver-
ification support is set up in such a way that it ignores any
verification annotations that were already statically veri-
fied, reducing the overhead of run-time verification.

This chapter presents the use of deductive and run-time
verification to prove assumptions of JavaBIP models. We
make the following contributions:

» We extend regular JavaBIP annotations with pre- and
postconditions for transitions and invariants for com-
ponents and states. This allows checking design as-

4.1 Introduction

sumptions, which are otherwise left implicit and unchecked.

» We extend VerCors to deductively verify a JavaBIP
model, taking into account its FSM and glue struc-
ture.

» We add support for run-time verification to the JavaBIP
engine.

» We link VerCors and the JavaBIP engine such that de-
ductively proven annotations need not be monitored
at run-time.
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» Finally, we demonstrate our approach on a variant of
the Casino case study from the VerifyThis Collabora-
tive Long Term Challenge.

Tool binaries and case study sources are available through
the artifact [26].

4.2 Related Work

There are several approaches to analyse behaviours of ab-
stract models in the literature. Bliudze et al. propose an ap-
proach allowing verification of infinite state BIP models
in the presence of data transfer between components [28].
Abdellatif et al. used the BIP framework to verify Ethereum
smart contracts written in Solidity [1]. Mavridou et al. in-
troduce the VeriSolid framework, which generates Solid-
ity code from verified models [102]. André et al. describe a
workflow to analyse Kmelia models [8]. They also describe
the COSTOTest tool, which runs tests that interact with the
model. Thus, these approaches do not consider verification
of model implementation, which is what we do with Veri-
fied JavaBIP. Only COSTOTest establishes a connection be-
tween the model and implementation, but it does not guar-
antee memory safety or correctness.

There is also previous work on combining deductive and

runtime verification. The following discussion is not ex-
haustive. Generally, these works do not support concur-
rent Java and JavaBIP. Nimmer et al. infer invariants with

Daikon and check them with ESC/Java [115]. However, they
do not check against an abstract model, and the results are

not used to optimize execution. Bodden et al. and Stulova

et al. optimize run-time checks using static analysis [34,

147]. However, Stulova et al. do not support state machines,

and Bodden et al. do not support data in state machines.
The STARVOORS tool by Ahrendt et al. is comparable to

Verified JavaBIP [5]. Some minor differences include the

type of state machine used, and how Hoare triples are ex-
pressed. The major difference is that it is not trivial to sup-
port concurrency in STARVOORS. VerCors and Verified

JavaBIP use separation logic, which makes concurrency sup-
port straightforward.
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4.3 JavaBIP and Verification
Annotations

JavaBIP annotations capture the FSM specification and de-
scribe the behaviour of a component. They are attached
to classes, methods or method parameters, and were first
introduced by Bliudze et al [30]. Figure 4.1 shows an exam-
ple of JavaBIP annotations. @omponentType indicates a
class is a JavaBIP component and specifies its initial state.
In the example this is the WAITING state. @Port declares
a transition label. Method annotations include @Transi-
tion, @Guard and @Data. @Transition consists of a port
name, start and end states, and optionally a guard. The ex-
ample transition goes from WAITING to PINGED when the
PING port is triggered. The transition has no guard so it
may always be taken. @Guard declares a method which
indicates if a transition is enabled. @Data either declares
a getter method as outgoing data, or a method parameter
as incoming data. Note that the example does not specify
when ports are activated. This is specified separately from
the JavaBIP component as glue [30].

We added component invariants and state predicates to Ver-
ified JavaBIP as class annotations. @Invariant (expr) in-
dicates expr must hold after each component state change.
@StatePredicate(state, expr) indicates expr holds
in state state. Pre- and postconditions were also added
to the @Transition annotation. They have to hold before
and after execution of the transition. @Pure indicates that
a method is side-effect-free, and is used with @Guard and
@Data. Annotation arguments should follow the grammar
of Java expressions. We do not support lambda expressions,
method references, switch expressions, new, instanceof,
and wildcard arguments. In addition, as VerCors does not
yet support Java features such as generics and inheritance,
models that use these cannot be verified. These limitations
might be lifted in the future.

[30]: Bliudze et al. (2017), Ex-
ogenous coordination of concur-
rent software components with
JavaBIP
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@Port(
name
type

)

@ComponentType(
initial = WAITING,
name = ECHO_SPEC

)

public class Echo {
@Transition(

name = PING,
source = WAITING,
target = PINGED
)
public void ping() {
System.out.println("pong");
}
}

PING,
PortType.enforceable

Figure 4.1: Example of a minimal
pinging component in JavaBIP
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4.4 Architecture of Verified JavaBIP

The architecture of Verified JavaBIP is shown in Figure 4.2.
The user starts with a JavaBIP model, optionally with veri-
fication annotations. The user then has two choices: verify
the model with VerCors, or execute it with the JavaBIP En-
gine.

We extended VerCors to transform the JavaBIP model into
the VerCors internal representation, Common Object Lan-
guage (COL). An example of this transformation is given
in Figures 4.3 and 4.4. If verification succeeds, the JavaBIP
model is memory safe, has no data races, and the compo-
nents respect the properties specified in the verification
annotations. In this case, no extra run-time verification is
needed. If verification fails, there are either memory safety
issues, components violate properties, or the prover timed
out. In the first case, the user needs to change the program
or annotations and retry verification with VerCors. This
is necessary because memory safety properties cannot be
checked with the JavaBIP engine, and therefore safe execu-
tion of the JavaBIP model is not guaranteed. In the second
and third case, VerCors produces a verification report with
the verification result for each property.

We extended the JavaBIP engine with run-time verification
support. If a verification report is included with the JavaBIP
model, the JavaBIP engine uses it to only verify at run-time
the verification annotations that were not verified deduc-
tively. If no verification report is included, the JavaBIP en-
gine verifies all verification annotations at run time.

4.5 Implementation of Verified
JavaBIP

This section briefly discusses relevant implementation de-
tails for Verified JavaBIP.

Run-time verification in the JavaBIP engine is performed
by checking component properties after component con-
struction, and before and after transitions. For example, be-
fore the JavaBIP engine executes a transition, it checks the
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JavaBIP Pass v Report
Model Fail %
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(optional)
JavaBIP
Engine

Success /
Violation »

component invariant, the state invariant, and the precon-
dition of the transition. When a property is violated, either
execution is terminated or a warning is printed, depending
on how the user configured the JavaBIP engine. We expect
runtime verification performance to scale linearly, as prop-
erties can be checked individually. We have not measured
the impact of the use of reflection in the JavaBIP engine.

For deductive verification the JavaBIP semantics is encoded
into COL. We describe this with an example. Figure 4.3
shows the ping method, where @Transition indicates a
transition from PING to PING. The guard indicates that the
transition is allowed if there is a ping. HAS_PING refers to a
method annotated with @Guard(name=HAS_PING), which
returns pingsLeft > 0.

Figure 4.4 shows the COL form of the ping method after en-
coding the JavaBIP semantics. Line 10 states the precondi-
tion, line 13 the postcondition. PING_state_predicate()
refers to the PING state predicate, which constrains the val-
ues of the class fields. By default it is just true. Since the
predicate is both a pre- and a postcondition, it is assumed
at the start of the method, and needs to hold at the end
of the method. hasPing() is the method annotated with
he @Guard(name=HAS_PING) annotation from Fig. 4.3. The
method is called directly in the COL representation. Note
the pure attribute that was added in Fig. 4.4 on line 5. This
ensures the method does not have side-effects, allowing it
to be used in contracts. We have implemented such a trans-
formation of JavaBIP to COL for each JavaBIP construct.

To prove memory safety, we extended VerCors to generate
permissions. This ensures verification in accordance with
the Java memory model. Currently, each component owns
the data of all its fields. This works for JavaBIP models that
do not share data between components. For other models,
a different approach might be necessary, e.g. VerCors tak-

Figure 4.2: Verified JavaBIP ar-
chitecture. Ellipse boxes repre-
sent analysis or execution.
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@Guard(name=HAS_PING)
public boolean hasPing() {
return pingsLeft > 0;

}

@Transition(
name=PING,
source=PING,
target=PING,
guard=HAS_PING

)

public void ping() {
pingsLeft--;

}

Figure 4.3: Example of a transi-
tion and guard in JavaBIP
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requires
PING_state_predicate();

ensures
PING_state_predicate();

pure

public boolean hasPing() {
return pingsLeft > 0;

}

requires
PING_state_predicate()
&& hasPing();

ensures
PING_state_predicate();

public void ping() {
pingsLeft--;

}

Figure 4.4: Internal represen-
tation of ping after encoding
JavaBIP semantics.



82 | 4 Towards Verified Concurrent Systems in Java

[7]: Amighi et al. (2015),
Permission-Based Separation
Logic for Multithreaded Java
Programs

[3]: Ahrendt et al. (2025), From
Model Checking to Deductive Ver-
ification: Results from a Smart
Contract Community Challenge

[26]: Bliudze et al. (2023), Arte-
fact of: JavaBIP meets VerCors: To-
wards the Safety of Concurrent
Software Systems in Java

1: Binary Decision Diagram [22]

ing into account permissions annotations provided by the
user. For more info about permissions, we refer the reader
to Chapter 2 or [7].

Finally, scalability of deductive verification of JavaBIP mod-
els could be a point of future work, as the number of proof
obligations scales quadratically in the number of candidate
transitions of a synchronization.

4.6 Casino Case Study

We demonstrate the Verified JavaBIP tool set by applying
it to the VerifyThis Casino case study [3]. This case study
introduces an implementation of a simple casino in the So-
lidity smart contract language. It was chosen because it
strikes a good balance between being non-trivial, and easy
to understand. Additionally, it also contains a problem, de-
tectable with both deductive and run-time verification.

We first discuss the case study and its origin in Section 4.6.1,
followed by an explanation of how the case study was en-
coded in JavaBIP, in Section 4.6.2. We show how to detect
the problem in Sections 4.6.3 and 4.6.4, and how to fix the
problem in Section 4.6.5. The artifact and documentation
to use it is located at [26].

Note: The implementation included with this artifact con-
tains a bug. Because of this, the "Casino Adjusted” case
study produces violated invariants which should not hap-
pen. In our opinion, the technique presented in this chapter
is sound; this bug is caused by a technicality, and not a flaw
in the general approach. We suspect that there is an unhan-
dled edge case in the BDD! encoding of the JavaBIP model,
which the JavaBIP engine uses to determine enabled tran-
sitions. The artifact is otherwise fully functional, carefully
documented and available online [26].

4.6.1 Solidity Implementation

This implementation of a casino in Solidity allows players
to bet on the outcome of a coin flip. If they guess the cor-
rect outcome, they win, and the casino pays out twice the
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Add to pot Add to pot

Create game

Game
available

Remove
place from pot

bet

Remove

from pot Decide
bet

Bet placed

Add to pot

bet. If they guess incorrectly, no money is received, and the
casino keeps the money:.

Figure 4.5 visualizes the structure of the casino smart con-
tract as a state machine. The operator can add to and re-
move money from the pot of the casino at any time. Ex-
cept after a bet is placed, then the operator can only add
money to the pot, because placing a bet is only allowed if
there is enough money in the pot. If it were possible to re-
move money from the pot after placing a bet, the casino
could end up with a negative balance. For more details, we
refer the reader to the VerifyThis website explaining the
challenge [155].

4.6.2 JavaBIP Encoding

The JavaBIP encoding of the Casino diverges from the orig-
inal casino example to generalize the original case study.
Concretely, the concept of “operator” and “player” were
factored out and made independent. This allows instantia-
tion of the model with any number of casinos, players, and
operators. There are several reasons for the generalization.
First, a model that can be instantiated for different parame-
ter values makes doing performance evaluations easier. Un-
fortunately, because of time constraints, this is still future
work. Second, the generalized model also allows use of an
advanced feature of the JavaBIP framework that was not

Figure 4.5: Finite state machine
representation of the Solidity
Casino smart contract. Note that
this figure does not visualize the
structure of the JavaBIP encod-
ing.

[155]: VerifyThis team (2022),
VerifyThis Collaborative Long-
term Verification Challenge: The
Casino example (link)


https://verifythis.github.io/casino/

84 | 4 Towards Verified Concurrent Systems in Java

add_to_pot [is_operator] add_to_pot [is_operator]
remove_from_pot remove_from_pot

add_to_pot

receive_bet
[is_operator]

create_game
[is_operator]

GAME_AVAILABLE

casino_win [is_operator && !guessed]
player_win [is_operator && guessed && is_player]

Casino

create_game create_game create_game
decide_bet decide_bet decide_bet

prepare_to_add
[enough_funds]

Operator
receive_money
Figure 4.6: Finite state machines prepare_bet
. GAME_AVAILABLE BET_PREPARED
of components in JavaBIP Slace_bef
Casino case study Player -

relevant before, which is that of a three-way synchroniza-
tion.

We will now discuss the actual JavaBIP encoding. In this
encoding, there are three component types: Player, Oper -
ator, and Casino. Changes in the state take place as syn-
chronizations between components. For example, when money
is added to the pot of the casino, Operator and Casino syn-
chronize, transferring the amount to be added from the Op-
erator to the Casino. Similarly, when Player bets, Player
and Casino synchronize, communicating the amount to be
betted. Finally, when a bet is decided, a ternary synchro-
nization takes place to establish in all three components
that the bet was decided. For Operator, this means the
amount of money in the Casino has either increased or
decreased. For Player, it either receives twice the bet, or
nothing. For the Casino, it either needs to pay out, or trans-
fer the bet to the pot. The components and their transitions
are visualized in Figure 4.6.

Consider the code in Figure 4.7, which shows a part of the
Casino component. The component starts in state IDLE.
As indicated by the @Transition annotation, the ADD_-
TO_POT transition can be activated in the BET_PLACED state.
A requirement of the transition is that only the operator
can trigger it, which is fulfilled by the guard part of the
transition annotation. Besides that, it is always safe to add
money to the pot, so it has no pre- and postconditions. In
the full JavaBIP model, the method can also be activated in



0O ~NOOOR WNRE

4.6 Casino Case Study

@ComponentType(initial = IDLE, name = CASINO_SPEC)
@Invariant("bet >= 0 && pot >= bet")
@StatePredicate(state = IDLE, expr = "bet == 0")

public class Casino {
int pot;
Coin guess;

int bet; // Other variables omitted...

@Transition(name = ADD_TO_POT, source = BET_PLACED, target = BET_PLACED, guard = IS_OPERATOR)

public void addToPot(@Data(name
@Data(name
pot = pot + funds;
System.out.println("CASINO" +
", pot: " + pot);
3

// Rest of component omitted...

}

= OPERATOR) Integer sender,
= INCOMING_FUNDS) int funds) {

id + ": " + funds + " received from operator " + sender +

Figure 4.7: Excerpt of JavaBIP Casino component

other states, but these annotations have been omitted from
the chapter for brevity. In the next subsection we will dis-
cuss parts of the model that might not be safe, and how
these limitations can be expressed in contracts.

The @Invariant and @StatePredicate annotations in Fig-
ure 4.7 indicate the component invariant and state invari-
ant, respectively. The component invariant indicates that
bet and pot should both contain non-negative integers.
The state predicate indicates that in the IDLE state, the bet
variable should be equal to zero. The full JavaBIP model
contains more annotations, but they are omitted for brevity.

Even though the model was carefully designed, it contains
a problem: the operator can withdraw more money than
is available in the Casino pot. The root cause of this prob-
lem is that the operator separately tracks the balance of
the casino in its own private field. As this field is private
and separate from the casino, it can become out of sync
with the actual balance of the casino. If operator decides to
withdraw an amount of money based on the number in its
out-of-sync private field, there is a chance the balance of
the operator becomes negative. In other words, the follow-
ing chain of events is possible:

1. Casino tells Operator its balance: €100.
2. Operator plans to withdraw €70.
3. Player 2 wins and withdraws its bet of €40. Casino

balance is now €60.

85
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100 // Remove money from pot

101 @Transition(name = REMOVE_FROM_POT, source = IDLE, target = IDLE, guard = IS_OPERATOR)

102 public void removeFromPot (
103

104 pot = pot - funds;

105 System.out.println("CASI
106 " removed by operator "
107 ", pot: " + pot);

108 }

2 @Invariant("bet >= 0 && po

. this expression may be false

@Data(name = OPERATOR) Integer sender,
@Data(name = INCOMING_FUNDS) int funds) {

NO" + id + ": " + funds +
+ sender +

Figure 4.8: Output of VerCors after

verifying the Casino JavaBIP model.

4. Operator synchronizes with the casino and withdraws
the planned amount of €70. The casino balance is
now -€10!

We will show how this problem can be detected with both
deductive and run-time verification.

4.6.3 Deductive Verification

To check the Casino model for problems, the source code
of the model is analysed with VerCors:

$ vercors Casino.java Constants.java Operator.java Player.java
< Main.java

After several seconds of analysis, VerCors reports that sev-
eral model annotations are not respected. For example, the
invariant of the Casino component does not hold after re-
moving money from the pot, as shown in Figure 4.8.

Note how both the transition that violates the invariant is
shown, as well as which part of the invariant is violated.
As bet is supposed to be non-negative, and pot should
be greater or equal to bet, it follows that VerCors cannot
prove that pot remains non-negative.



4.6.4 Run-Time Verification

The JavaBIP engine with run-time verification now checks
the contract that, according to the VerCors output, it was
not able to verify: pot >= bet.

In the following we see that the execution starts with cre-
ating the casino, and initializing the operator and players
with the predefined amount of money in their wallets.
OPERATOR101 created with wallet: 500

CASINO201: INITIALIZED

PLAYER301: INITIALIZED

PLAYER302: INITIALIZED

PLAYER303: INITIALIZED

OPERATOR101: decided to put 446, wallet: 54

PLAYER303: bet 6 prepared, purse: 94

PLAYER301: bet 48 prepared, purse: 52

PLAYER302: bet 20 prepared, purse: 80
CASINO201: GAME CREATED

The model runs for a while, after which its get into a state
where the casino balance is €50. Player two bets €40 on the
outcome tails. Meanwhile, the operator plans to withdraw
€30. Inbetween planning the withdrawal, and actually with-
drawing the money, player two wins the bet. This reduces
the casino balance to €10. This does not actually make the
pot go negative yet: the casino only takes this transition if
it is safe to do so, as part of its transition guards.

Instead, the problem occurs when the new casino balance
is propagated to the operator. In fact, this new balance is
incompatible with the amount the operator was planning
to withdraw! This triggers an alert in the form of a state
predicate violation, as can be seen in the following model
trace:

CASINO201: received bet: 40, guess: TAILS from player 302

OPERATOR101: decided to withdraw 30, wallet: 50

CASINO201: 40 lost, pot: 10

PLAYER302: won 40, purse: 80

OPERATOR101: making one step in the game

19:06:54.881 [ACTOR_SYSTEM-akka.actor.default-dispatcher-3]

ERROR org.javabip.executor.BehaviourImpl - Operator: State
— predicate violation: © <= amountToMove && amountToMove <=
< pot

for the state: WITHDRAW_FUNDS

4.6 Casino Case Study

87



© O ~NOOU A WNRE

88 | 4 Towards Verified Concurrent Systems in Java

// Remove money from pot
@Transition(name = REMOVE_FROM_POT, source = IDLE, target = IDLE,
guard = "IS_OPERATOR && ENOUGH_FUNDS")
public void removeFromPot(@Data(name = OPERATOR) Integer sender,
@Data(name = INCOMING_FUNDS) int funds) {
pot = pot - funds;
System.out.println("CASINO" + id + ": " + funds + " removed by operator " + sender +
", pot: " + pot);

3

Figure 4.9: REMOVE_FROM_POT transition with the new guard underlined

4.6.5 Fixing the Problem

Generally, there are several ways to fix a broken model:
(i) always execute the model with run-time verification,
(ii) add extra guards, or (iii) refactor the model.

Always enable run-time verification The user can per-
manently enable run-time verification. This ensures that
any deviations from the model will be detected, meaning
execution is always safe. Always enabling run-time ver-
ification imposes two limitations. First, the performance
penalty of run-time verification has to be acceptable for
this particular application. Second, whenever a deviation
from the model is detected, the JavaBIP engine will termi-
nate. This possibility of sudden termination also has to be
acceptable for this particular application.

Add extra guards Guards can be added to restrict model
behaviour. Effectively, this removes the transitions from
the model that introduce the problematic behaviour. How-
ever, as adding guards might introduce deadlocks, it is not
a general solution.

To illustrate the tool set, we will show an example of apply-
ing this fix. We add the guard ENOUGH_FUNDS to the tran-
sition annotation of REMOVE_FROM_POT. The updated an-
notated method is shown in Figure 4.9. This will restrict
the transition to only be enabled when there is enough
money in the casino pot, ensuring that the casino pot can-
not become negative because of withdrawals from the op-
erator.

For deductive verification, the change in the model causes
VerCors to succesfully verify the model: it prints “Verification
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completed successfully.” upon termination, which in-
dicates that the model is memory safe, data race free, and
respects the verification annotations. Furthermore, a verifi-
cation report is produced, which states that the invariant of
the Casino component has been verified. For run-time veri-
fication, the change will cause the model to no longer crash
at run-time when run-time verification is enabled, as the in-
variants are no longer violated. Additionally, when the pre-
viously produced verification report is included when exe-
cuting the model, the run-time verifier skips checking the
component invariant of Casino while running the model.
For a small model such as this one, the difference between
doing the run-time checks and not doing them is negligi-
ble. However, we speculate that for models with more com-
ponents, or more complicated annotations, the overhead
could be noticeable.

Refactor the model The final solution is to refactor the
model to fix the problem. For example, the casino could
limit how much the player can bet by first having the player
check the current balance. This would effectively encode a
kind of compare-and-swap operation into the model. For
the JavaBIP casino model, applying this refactoring means
that the operator might have to decide how much to with-
draw several times before actually withdrawing money. This
is in contrast to how the original formulation of the model
works: in the original model, when the operator decides to
withdraw €10, it is only a matter of time until it will actu-
ally receives €10. In practice, refactoring the model usually
changes the behaviour of the model as well, which might
not be acceptable given a particular application.

4.7 Conclusion and Future Work

We presented Verified JavaBIP, a tool set for verifying the
assumptions of JavaBIP models and their implementations.
The tool set extends the original JavaBIP annotations for
verification of functional properties. Verified JavaBIP sup-
ports deductive verification using VerCors, and run-time
verification using the JavaBIP engine. Only properties that
could not be verified deductively are checked at runtime.
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In the demonstration we automatically detect a problem
on the Casino case study using Verified JavaBIP.

There are several directions for future work. First, support
for checking memory safety could be extended by support-
ing data sharing between components. Second, we want to
investigate run-time verification of memory safety. Third,
more experimental evaluation can be done on the capabil-
ities and performance of Verified JavaBIP. Fourth and fi-
nally, we want to investigate run-time verification of safety
properties of the JavaBIP model beyond invariants.



Verified Shared Memory
Choreographies

In the VeyMont tool, choreographies can be used to spec-
ify concurrent programs using a sequential format. To sup-
port choreography-based development, VeyMont verifies
a given choreography for functional correctness and mem-
ory safety, and subsequently generates a correct concur-
rent program. This approach transfers properties verified
at the high level of a distributed system to its low-level im-
plementation in a safe manner. It also indirectly narrows
the gap between software design and implementation. How-
ever, VeyMont initially did not support programs with shared
memory, limiting the applicability of VeyMont. In this chap-
ter, we show how we overcome this limitation, by adding
support for ownership annotations to VeyMont. Moreover,
we also adapted the concurrent program generation, so that
it does not only generate code, but also annotations. As
a result, further changes and optimizations of the concur-
rent program can directly be verified. We demonstrate the
extended capabilities of VeyMont on illustrative case stud-
ies.

5.1 Introduction

In program verification, auto-active verifiers prove correct-
ness of programs automatically, with respect to a given
specification. Writing specifications is non-trivial already

This chapter is based on “VeyMont: Choreography-Based Generation of
Correct Concurrent Programs with Shared Memory” by Rubbens, Van
den Bos, and Huisman [133], published at iFM 2024.
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in a sequential setting, and concurrency makes it even more
challenging, as a concurrent program has a combinatorial
number of interleavings to be considered. VeyMont [36] ad-
dressed this problem by combining choreographies [105],
for specifying (concurrent) protocols, with deductive verifi-
cation. VeyMont generates implementations for choreogra-
phies, which can be verified by using the VerCors verifier
for concurrent software [13] as back-end. The choreogra-
phies of VeyMont allow specifying a concurrent program
in a sequential format to ease verification, and then to gen-
erate the correct concurrent program.

In its purest form, a choreography [105] describes a se-
quence of message exchanges between participants of the
choreography, called endpoints. The ordering of messages
is partially fixed: an endpoint skips exchanges it does not
participate in. Choreographies are deadlock free on the mes-
sage level, meaning no endpoint will be stuck waiting for
a message that will never be sent. Note that in choreogra-
phies with shared memory and local actions, as presented
in this work, deadlock in general is still possible. This is be-
cause endpoints can take local actions, such as acquiring
locks, which might deadlock. Choreographies also guaran-
tee that messages are well typed, meaning an endpoint will
never receive an int when they are expecting a float. Fi-
nally, for each endpoint a specialized implementation can
be generated. When these implementations are executed
in parallel, messages are exchanged between processes as
specified in the choreography. While similar, choreogra-
phies differ from session types [72]: a session type can only
be used to type check implementations that are written by
a user, choreographies allow automatic derivation of an im-
plementation for each of its endpoints.

In the context of VeyMont [36], a choreography specifies
a concurrent program, such that its implementation can
be generated. VeyMont supports verification of memory
safety and functional correctness of these choreographies,
which allows reasoning about e.g. program state properties.
Such reasoning is not supported for the messages of tradi-
tional choreographies, which do not have local actions and
shared memory. To support this verification, VeyMont re-
quires users to annotate choreographies with contracts for
functional correctness, e.g. pre- and postconditions. Addi-
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1 | choreography incrField() { 1 choreography incrStore(Store s) {
2 endpoint a = Role(); 2 endpoint a = Role(s);
3 endpoint b = Role(); 3 endpoint b = Role(null);
4 4
5 requires a.x > 0; 5 requires a.s.x > 0;
6 ensures a.x == b.x; 6 ensures a.s.x > 2;
7 ensures a.x > 2; 7 run {
8 run { 8 a.s.x = a.s.x + 1;
9 a.x = a.x + 1; 9 // Store reference sent to b
10 communicate a.x -> b.x; 10 communicate a.s -> b.s;
11 b.x = b.x + 1; 11 b.s.x = b.s.x + 1;
12 communicate b.x -> a.x; 12 // Store reference sent to a
13 } 13 communicate b.s -> a.s;
14 |3 14 3
15 3
(a) A shared field is simulated by broadcasting in-
termediate results between a and b. (b) A shared field is incremented by both a and b.

The messages function as barriers.

Figure 5.1: Two choreographies where endpoints a and b each increment a value.

tionally, it generates verification annotations for memory
safety: in particular permissions to specify ownership of
heap elements, like objects and their fields. The reasoning
happens on the level of the choreography, and is preserved
in the generated implementation [80]. VerCors [13] is used
as the back-end verification engine for VeyMont. For more
information about VerCors, see Chapter 2 or Armborst et
al. [13].

An example VeyMont choreography is given in Fig. 5.1a. It
defines two endpoints a and b of class Role (lines 2 and 3).
The class Role has a field x of type int. The run decla-
ration defines actions (line 8): a increments a. x, and then
sends the value stored in a.x to b. Then b increments b. x,
and sends it back to a. The precondition of run (line 5) is
that a. x is more than 0. This is an example of a constraint
on input data, and necessary to prove the postconditions:
that a.x and b.x are equal (line 6), and that the value of
a.x is more than 2 (line 7).

In this chapter we extend VeyMont to address two limita-
tions of the original implementation. The first limitation is
the single-owner policy, where each endpoint owns all the
fields reachable from it. For example, in Fig. 5.1a, a owns
its only field a.x, while b owns b.x, in any program state,
and sharing is only supported via duplicated values. This
choice allowed to automatically generate permission anno-
tations for verifying memory safety with the VerCors back-
end.

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

[13]: Armborst et al. (2024), The
VerCors Verifier: A Progress Re-
port
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[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[144]: Sakar et al. (2022), Alpinist:
An Annotation-Aware GPU Pro-
gram Optimizer

Unfortunately, the single-owner policy excludes concurrent
programs that share memory between threads. This is prob-
lematic, because sharing memory is an important pattern
in many concurrent programs. Also, choreographies with a
single-owner policy do not scale well for more endpoints,
and for large data structures the overhead of duplication
is large. Finally, the single-owner policy disallows sharing
read-only data structures. What we instead wish to have
is shared memory as used in Fig. 5.1b. The choreography
is the same as Fig. 5.1a, except that endpoint a is initial-
ized with a reference to a store s, which is used to up-
date the field x within. This reference is then communi-
cated between a and b, instead of the literal integer. While
the choreography still includes communicate statements
to prevent data races, access to x is now shared. In this
chapter, we extend VeyMont with transfer of ownership
using communicate statements, i.e. at line 10 of Fig. 5.1b,
ownership of s should be transferred from a to b. It is safe
to transfer ownership here, because the receiver waits for
the message of the sender. This implied synchronization
points justifies permission transfers.

A second limitation of the original VeyMont [36] is that
the verification annotations of a choreography are not pre-
served in the generated implementation. Consequently, the
verification properties cannot be directly verified on the im-
plementation. Since the properties have not been proven to
hold for any variant of the program, an adapted and veri-
fied implementation can only be obtained by adapting and
verifying the choreography, and then generating the imple-
mentation. From an engineering viewpoint, and especially
for small changes, this may cause unnecessary overhead.
Also, it is risky to change the generated implementation,
e.g. for performance, as this might introduce bugs that can-
not be detected by verification. Additionally, the lack of
annotations in the generated implementation also prevents
application of tools that further process & leverage annota-
tions. One example of such a tool is Alpinist [144], which
is a GPU program optimizer that uses annotations to check
applicability of optimizations and preserves annotations in
the output program.

Furthermore, because a generated implementation without
annotations cannot be verified, bugs in the code genera-
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tor of VeyMont are not spotted. In this work, we increase
confidence in the generated implementation by making it
verifiable with VerCors. This allows the user to establish
correctness of the generated implementation without de-
pending on the implementation details of VeyMont.

Contributions In this work we present an extension of
VeyMont that supports choreographies with shared mem-
ory and preserves verification annotations in the generated
implementations. This extension allows VeyMont to sup-
port fine-grained and dynamic ownership via endpoint an-
notations. In particular, access to shared memory can be ex-
changed between endpoints by annotating a communicate
statement with permissions. By extending this approach to
expressions and statements, VeyMont can generate imple-
mentations with verification annotations. We demonstrate
the extended VeyMont through three consecutive improve-
ments of the Tic-Tac-Toe case study, as presented in the
original VeyMont tool paper [36]. These case studies show
that even in simple programs, complicated properties can
emerge. We provide the full annotated programs and tool
implementation in the artifact [132].

Chapter structure We first describe the workflow and
choreographic language supported by VeyMont and intro-
duce our approach with an example (Section 5.2). Then,
we elaborate how choreographies are verified (Section 5.3),
and how the concurrent program with verification annota-
tions is generated (Section 5.4). After, we discuss our case
studies (Section 5.5), and related work (Section 5.6). Finally,
we conclude and discuss future work (Section 5.7).

5.2 VeyMont Workflow and
Choreography Language

We now discuss the workflow and choreography language
of VeyMont, including the new features that we added to
support shared memory.

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[132]: Rubbens et al. (2024), Vey-
Mont Permission Annotations Tic-
Tac-Toe Case Studies and Tool Im-
plementation
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Figure 5.2: Workflow for using VeyMont choreographies

5.2.1 VeyMont Workflow

The workflow for using VeyMont is shown in Fig. 5.2, and
consists of 3 steps:

Step 1: Verify. When a choreography with annotations is
input into VeyMont, the semantics of the choreography is
encoded (see Section 5.3), such that VerCors can verify it.
If verification fails, there is a problem with the choreogra-
phy: either it has a bug, or the contracts are not properly
specified.

Step 2: Endpoint Projection. If verification succeeds, VeyMont
applies endpoint projection on the choreography to gen-
erate an implementation for each choreography endpoint,
with annotations. Section 5.4 discusses the endpoint pro-
jection. VeyMont can generate both PVL and Java code.

Step 3: Use. The generated implementation can be used in
two ways. First, if Java code was generated, it can be exe-
cuted. Second, for PVL code, it can be verified with stan-
dalone VerCors. If standalone verification fails, there was
either a bug in the projection step, the choreography con-
tains annotations that cannot be projected (using \chor,
see Section 5.2.2), or the user made changes to the gener-
ated implementation that are incompatible with the cur-
rent annotations.

5.2.2 Choreography Language

VeyMont extends the PVL language with syntax for defin-
ing choreographies. This syntax extension is summarized
informally in Fig. 5.3.
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(GlobalDecl) ::= (Class) (ChorStmt) == -
(Procedure) | [(Name):] (Expr) . (Name) :=(Expr);
| [(Contract)] | channel_invariant (Expr);
choreography (Name) ({Params)) { communicate [(Name):] (Expr) -> [(Name):] (Expr);
(ChorDecl)*
3} (Expr) u= -

Perm[(Name)] ((Expr), (Expr))

|
(ChorDecl) := | (\endpoint (Name); {Expr))
| endpoint (Name) = (Name)({Args)); | (\chor (Expr))
| [(Contract)] run { {ChorStmt)* } | \msg
| (Method) | \receiver
| \sender

Figure 5.3: VeyMont syntax in EBNF.

Global declarations VeyMont definitions coexist with other
PVL definitions such as classes. This way VeyMont pro-
grams can use procedures and types from PVL. VeyMont
adds a type of global declaration, the choreography. This

is the root definition for a VeyMont choreography. It con-
sists of an optional contract, a name, parameters, and zero
or more choreography declarations. In a VeyMont program,
multiple choreographies can co-exist simultaneously.

Choreographic declarations A choreographic declaration
is either an endpoint declaration, a run declaration, or a

method declaration. An endpoint declaration defines an

endpoint that participates in the choreography. Semanti-
cally this corresponds to an object created with a construc-
tor. An endpoint has a name, a name of a PVL class, and

a list of expressions as arguments for the constructor. The

run declaration consists of an optional contract, and a body

consisting of choreographic statements. Lastly, a regular

PVL method definition is also a ChorDecl, when its body

consists of choreographic statements.

Choreographic statements There are two choreographic
statements: choreographic assignment and the communi-
cate statement. Choreographic assignment (:=) is similar
to regular assignment, with the restriction that the value
can only be computed using state from one endpoint. It
consist of an expression of the object being assigned to,
the target field, and an expression. Moreover, the choreo-
graphic assignment can optionally be labeled with an end-
point name to enable using a shared field from a different
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endpoint. The following verifies if a has permission for
bothb.fanda.f:“a: b.f := a.f;”.

The communicate statement sends a value from one end-
point to another. It requires a receiving endpoint and field,
and a sending endpoint and expression. When endpoints
are omitted, they are derived from the expressions, e.g. a. x
has a as the implicit endpoint. communicate statements
are semi-synchronous: sending is non-blocking, receiving
is blocking. Annotations for ownership transfer of a com-
municate statement, as well as functional constraints over
the message, can be specified in a channel_invariant an-
notation. For example, the annotation “channel_invari-
ant \msg > 2; communicate a.x -> b.x;” canbe added
to verify that the message sent from a.x to b.x is bigger
than 2. Currently, only the choreographic expressions (ex-
plained in the next paragraph) \msg, \sender, \receiver
as well as global functions, are allowed within channel_-
invariant. This is purely a limitation of the current imple-
mentation, as channels can straightforwardly be extended
with extra context.

Within a choreography declaration, also selected PVL state-
ments are allowed, such as assert, assume, if, while and
blocks of statements.

Choreographic expressions There are six choreographic
expressions. An endpoint name can be denoted within brack-
ets at a permission annotation, to specify ownership by
the endpoint of the stated permission. The keyword \end-
point requires the name of an endpoint and an expression.
This indicates that, in the encoding (Section 5.3), the ex-
pression should only be evaluated for the endpoint, and
only included in the implementation of the endpoint (Sec-
tion 5.4). Within a channel_invariant, three additional
expressions are available. These are \msg, \sender and
\receiver. They are used to indirectly refer to the sender,
receiver, and message of the next communicate statement.

Finally, the \chor keyword wraps an expression. This ex-
pression can access memory of all endpoints in the chore-
ography. Specifically, within \chor endpoint ownership an-
notations are ignored. Because of this, it cannot be included
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in the generated implementation. Consequently, if a chore-
ography contains a \chor expression, the generated imple-
mentation might not verify. More formally, we believe that
if a correct choreography does not contain \chor, the gen-
erated implementation also verifies. We have not proven
this, and leave it for future work. The \chor keyword is
included because it makes the workflow of the original
VeyMont [36] possible. It is also useful for prototyping con-  [36]: Van den Bos et al. (2023),

tracts of a choreography, as endpoint ownership annota-  VeyMont: Parallelising Verified
Programs Instead of Verifying Par-

tions prevent asserting expressions that ignore endpoint allel Programs

ownership, which limits the user when debugging anno-
tations. Finally, \chor serves a similar role as the assume
statement. Once a choreography is proven correct, the \chor
should be removed. An example of \chor is in the TTT
case study on page 107.

5.2.3 New Features of VeyMont

This chapter introduces two extensions for VeyMont chore-
ographies: endpoint ownership annotations, and channel
invariants.

Endpoint ownership annotations indicate the owner of a
permission. When an endpoint e owns a permission Perm(o. x,
f), this is written as Perm[e] (0.x, f).For example, the
permission Perm[alex](o.x, 1) allows alex to write to
field x of object 0. When a user writes Perm(alex.x, 1),
VeyMont infers automatically that Perm[alex] (alex.x, 1)
was meant. By explicitly writing Perm[bob] (alex.x, 1)
the user specifies that bob currently has writing access to
alex.x, while alex has no access. This way, alex.x is
used as shared memory. Assignments can be annotated sim-

ilarly: e: o.f := v denotes that endpoint e executes as-
signment o. f := v. Again we allow shorthand notation:
alex.x := 1denotesalex: alex.x := 1. Communica-

tions are written as communicate s: v -> r: u, where
endpoint s sends value v to receiver r, which stores it in u.
The shorthand notation communicate alex.x -> bob.y
is also supported.

Channel invariants allow access to memory to be exchanged,
i.e. shared. This is done by adding a channel_invariant
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Figure 5.4: A choreography
where the endpoints increment
a shared field with ownership
annotations.  Adapted  from
Fig. 5.1b. Note that some end-
point ownership annotations
that can be inferred by VeyMont
are included for clarity.

1 | choreography increment(Store s) {

2 endpoint a = Role(s);

3 endpoint b = Role(null);

4

5 requires Perm[a](a.s, 1\2) ** Perm[a](a.s.Xx, 1) ** a.s.x > 0;

6 ensures Perm[a](a.s, 1\2) ** Perm[a](a.s.x, 1) ** a.s.x > 2;

7 run {

8 a: a.s.x = a.s.x +1;

9 channel_invariant Perm(a.s, 1\2) ** Perm(a.s.x, 1) ** a.s.x > 1;
10 communicate a: a.s -> b: b.s;

11 assert Perm[b](a.s, 1\2) ** Perm[b](a.s.x, 1);

12 b: a.s.x := a.s.x + 1;

13 channel_invariant Perm(a.s, 1\2) ** Perm(a.s.x, 1\2) ** a.s.x > 2;
14 communicate b: b.s -> a: a.s;

15 3

16 | }

annotation on a communicate statement. E.g. channel_-
invariant Perm(alex.x, 1) gives the receiver write
access to alex.x, while the sender has lost access after
this communication. In other words, permissions are trans-
ferred between the sending and receiving party if and only
if they are stated in the channel invariant.

5.2.4 Motivating Example

We will now further demonstrate these concepts using an
example. Figure 5.4 shows how we annotate the program
from Fig. 5.1b so that VeyMont can verify the program with
the shared field.

Endpoints a and b are initialized at lines 2 and 3. Then,
line 5 states the precondition of the run method: a has
write access to a.s.x. On line 8, a increments a.s.x. This
is explicitly denoted with a: at the start of the line. On
lines 9 and 10, the reference to Store s is sent from a to
b. In addition, the channel invariant transfers write access
for a.s.x from a to b. This is explicitly verified with the
assert on line 11. On line 12, b performs an increment
to a.s.x, and then proceeds with the communicate state-
ment on line 14, to send write permission back to a. The
postcondition on line 6 states these write permissions, and
additionally that a. s . x is more than 2. VeyMont will verify
the program, in particular that the postcondition will hold.
After that, VeyMont can also be invoked to generate the
corresponding concurrent program with threads for end-
points a and b.
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choreography setter(Store s) { 1 | resource perm_x(Role e, Store s) = Perm(s.x, 1);
endpoint a = Role(); 2
endpoint b = Role(); 3 | requires perm_x(a, s);
4 | void setter_run_a(Store s, Role a, Role b) {
requires Perm[a](s.x, 1); 5 unfold perm_x(a, s);
run { 6 s.X = 0;
a: s.x := 0; 7 fold perm_x(a, s);
b: s.x = 1; 8 unfold perm_x(b, s);
3 9 s.Xx = 1;
3 10 fold perm_x(b, s);
113

(a) An incorrect choreography
(b) Encoding of run

Figure 5.5: A choreography and encoding of run using permission stratification.
5.3 Choreography Verification

VeyMont generates an encoding of a choreography such
that VerCors can verify it. This encoding essentially col-
lapses all endpoint behaviors into one implementation. To
prevent permissions of different endpoints from being acci-
dentally combined, permissions are stratified (Section 5.3.1).
This also allows encoding the transfer of the message and
permissions between two endpoints (Section 5.3.2).

5.3.1 Permission Stratification

To encode permissions labeled with an endpoint owner into
PVL, we use PVL predicates to label a permission with its
endpoint owner. For each permission annotated with an
endpoint owner, we create a predicate wrapping that per-
mission. To this predicate we add an argument that mod-
els the endpoint owner. In essence, this argument enforces
that a predicate can only be unwrapped if the current end-
point owner is specified. We call this technique “permis-
sion stratification”. For example, the permission on line 5 of
Fig. 5.5a results in the predicate on line 1 in Fig. 5.5b, where
[a] in the annotation causes creation of the argument e in
the predicate. The argument e is only used to distinguish
stratified permissions with different owners, and therefore
does not occur in the predicate.

Adding an extra argument to the predicate, to encode which
endpoint owns the permission, works because of the fol-
lowing: unfolding a predicate only succeeds if the correct
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arguments are used. In this case, unfolding means exchang-
ing a predicate instance for its body, which in turn modifies
the verification state. For example, on line 3 in Fig. 5.5b, the
predicate perm_x(a, s) is required. Within the method,
the permission within the predicate can only be accessed
using unfold perm_x(a, s).Conversely, the statement
unfold perm_x(b, s) would fail, as there is only a pred-
icate perm_x(a, s) present. Because the arguments have
to be stated explicitly to unfold the predicate, the extra ar-
gument effectively acts as a “key” to access the permission
within the predicate.

VeyMont unfolds wrapper predicates automatically when
the endpoint owner of a permission is known, for exam-
ple, in the case of assignment. This makes the permission
in the predicate available for verification. Later, VeyMont
folds the predicate, possibly with a new endpoint owner.
The fold and unfold steps are generated by VeyMont ac-
cording to inferred or user-supplied annotations, and are
checked by VerCors. For example, VeyMont generates un-
fold and fold annotations before and after assignment to
fields. This is shown on lines 5 and 7 of Fig. 5.5b.

The example in Fig. 5.5a shows an incorrect choreography.
The two endpoints share a Store s and each writes to
it. The user specifies that a owns the store on line 5. This
program contains a data race: a and b run concurrently and
write to the same location. Therefore, verification will fail,
with an error on line 8.

The example in Fig. 5.5b shows the encoded choreography
with all permissions stratified. Line 1 defines a wrapping
predicate for when the field x is owned by a given endpoint
Role e.Line 4 encodes the choreography parameter Store
s, and endpoints a and b. Verification with VerCors yields
that on line 8 it cannot unfold predicate perm_x(b, s) be-
cause it is not present in the verification state. Indeed, af-
ter line 7, the verification state holds exactly perm_x(a,
s), and not perm_x(b, s)! One way to fix this example
is to send the permission Perm(s.x, 1) from a to b be-
tween the two assignment statements using a communi-
cate statement. This will exchange perm_x(a, s) with
perm_x(b, s),at the cost of synchronization at run-time
(see Section 5.3.2).
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choreography incr(int i) { 1 | requires perm_x(a, a) **
endpoint a = Role(i); endpoint b = Role(i); 2 (c() ==> perm_z(a, a) **
requires Perm(a.x, 1) ** 3 get_z(a, a) == get_x(a, a);
(c() ==> Perm(a.z, 1) ** a.z == a.x); 4 | requires perm_y(b, b);
requires Perm(b.y, 1); 5| void incr_run(int i, Role a, Role b) {
run { 6 // Evaluate message
channel_invariant 7 int m = get_x(a, a);
c() ==> Perm(a.z, 1) ** \msg == a.z; 8 // Assert invariant
communicate a.x -> b.y; 9 assert (c() ==> perm_z(a, a) **
33 10 m == get_z(a, a));
11 // Transfer invariant
(a) Input choreography 12 if (c()) { unfold perm_z(a, a); }
13 if (c()) { fold perm_z(b, a); }
. R 14 // Store message at target
// For each field fe {c, x, y, z}, define: 15 unfold perm_y(b, b);
resource perm_f(Role e, Role r) = Perm(r.f, 1); 16 b.y = m;
int get,f(Role e, Role r) = ) 17 fold perm_y(b, b);
(\unfolding perm_f(e, r) \in r.f) 18 |3

(b) Background definitions for encoding

(c) Encoding of choreography

Figure 5.6: Encoding of a choreography with a channel_invariant and communicate statement. For brevity,
method definition incr has been omitted in Fig. 5.6c.

By wrapping permissions in predicates, VeyMont can ver-
ify the behavior of multiple endpoints within one program.
This is the key ingredient that allows verification of chore-
ographies with shared memory.

5.3.2 Encoding of Choreographic
Communication

Figures 5.6b and 5.6¢ show how VeyMont encodes the com-
municate statement and channel_invariant of Fig. 5.6a.
This is an example to illustrate the encoding, it is not mean-
ingful on its own. All line numbers in this subsection refer
to Fig. 5.6¢c. Summarizing, the encoding consists of 4 steps:
line 7 encodes message evaluation, line 9 encodes channel
invariant checking, lines 12 and 13 encode the transfer of
the channel invariant from a to b, and lines 15 to 17 encode
message reception. The fold annotations are required for
handling stratified permissions, following the explanation
in the previous section.

First, the message to be sent is stored in m on line 7. To
read a.x, the function get_x is used. Each get_f func-
tion unfolds the wrapper predicate perm_f to read field
f. On line 9, the channel invariant is checked using as-
sert. Note that the channel invariant was transformed: m
replaces \msg, and a wrapper predicate replaces Perm(a. z,
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1), following the stratified permissions approach. The owner
of this wrapper predicate is a, because a is the sender of the
communication.

The channel invariant is transferred from a to b on lines 12
and 13 via the unfold and fold statements. The chan-
nel_invariant contains the condition c(), which is an
abstract global condition defined for this example. Because
of this condition, if statements are also necessary to con-
ditionally unfold and fold the predicates that wrap per-
missions. For the boolean parts of the invariant, no annota-
tions have to be added, as these are kept track of automat-
ically by the symbolic execution back-end of VerCors. Fi-
nally, m is assigned to target location b .y on line 16, which
models the receiving of the message by b.

5.4 Endpoint Projection

To generate an implementation for an endpoint of a given

choreography, the endpoint projection translates each state-
ment depending on which endpoint is currently the target.
We extend the endpoint projection presented in [36] to take

into account endpoint ownership annotations. This allows

VeyMont to include contracts in the projection, making the

generated implementation verifiable if correct annotations

are provided. In addition, we show how channel invariants

are included in the channel classes that implement commu-
nicate statements.

5.4.1 Statement and Expression Projection

Figure 5.7 shows — by example - the endpoint projection
rules to generate an implementation for a target endpoint.
The top half of the table shows the rules identical to those
in [36], the bottom half shows the new rules. Using these
new rules, contracts and loop invariants can straightfor-
wardly be transformed and preserved in the generated im-
plementation, which was previously not possible.

We will now further discuss the rules in the bottom half of
Fig. 5.7. If the target endpoint participates, i.e. occurs, in a
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Choreography with a & b Projection for: a Projection for: b
a.x = 5; —> a.x = 5; /* skip */
communicate a.x -> b.y; — a_b.writevalue(a.x); b.y = a_b.readvalue();
if (a.x == 5 && —> if (a.x == 5 && if (true &&
b.y ==9) { - true) { b.y ==9) {

a.foo(a.x); } — a.foo(a.x); } /* skip */ }
b: a.x := 5; —> /* skip */ a.x = 5;
communicate b: a.x -> a: b.y; — b.y = a_b.readvalue(); a_b.writevValue(a.x);
Perm[a](x.f, 1) —> Perm(x.f, 1) true
(\chor v) —> true true
(\endpoint a; v) - v true

Figure 5.7: Summary of endpoint projection rules by example. Top half describes rules from [36]. Bottom half
describes endpoint ownership annotations.

statement or expression, it is transformed as follows: chore-
ographic assignment (:=) is transformed into plain assign-
ment, communicate statements are transformed into invo-
cations of readvalue and writevalue methods on chan-
nel objects. Perm[e] (0.x, f) is included without [e] in
the generated implementation, and similarly, the keyword
(\endpoint e; v) causesv to be included in the generated
implementation. If the target endpoint does not participate
in a statement or expression, it is omitted or replaced with
true. The keyword (\chor wv) is handled by always dis-
carding it. This is because \chor can freely access the mem-
ory of all endpoints, and hence cannot safely be included
in the generated implementation (see Section 5.2.2).

5.4.2 Channel Generation

For each communicate statement (Fig. 5.8a) VeyMont gen-
erates a distinct channel class (Fig. 5.8b). An instance of
this class is constructed at the start of the program, and
both endpoints of the communicate statement are given
a reference to it. To send and receive values, the methods
writevValue and readvalue can be called. The lock_in-
variant expresses that the channel_invariant holds at
the moment of transfer, i.e. when writevalue has writ-
ten the communicated value in msg and set hasMsg to true,
and readValue has been called after that. Because write-
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channel_invariant
Perm(\sender.z, 1)
Perm(\receiver.z, 1) **
\sender.z == \receiver.z;

communicate a.x -> b.y;

* %

(a) communicate with corresponding chan-
nel_invariant

00 O U W =

lock_invariant
Perm(hasMsg, 1) ** Perm(msg, 1) **
Perm(s, 1\2) ** Perm(r, 1\2) **
(hasMsg ==> Perm(s.z, 1) **
Perm(r.z, 1) ** s.z == r.z);
class ChanAB {
boolean hasMsg; int msg;
Role s, r; // Sender, receiver

context Perm(s, 1\8) ** Perm(r, 1\8);

requires Perm(s.z, 1) ** Perm(r.z, 1) **

s.z == r.z;
void writevalue(int m);

context Perm(s, 1\8) ** Perm(r, 1\8);

ensures Perm(s.z, 1) ** Perm(r.z, 1) **
s.z == r.z;

int readvalue(); }

(b) Generated channel class.

Figure 5.8: Generated channel class for channel_invariant and communicate.

Value has the channel_invariant as precondition, and

readVvalue as postcondition, the transfer of the channe1_-
invariant is achieved.

Since a channel invariant may refer to both \sender and
\receiver, the generated class contains both endpoints as
references s and r. Read permissions for these fields reside
at both endpoints. This way, respective fields of \sender
and \receiver, e.g. \sender .z, can be expressed as s.z,

when calling writevValue or readvalue. The omitted im-

plementations of writevalue and readValue are standard
wherewriteValue does not block, but readvalue does.

5.5 Case Studies

To demonstrate the VeyMont extension of this chapter, we
present case studies on three variants of Tic-Tac-Toe. Here
TTT is the baseline case study, adapted from [36], TTT g
uses ownership annotations, and TTTj,s optimizes away

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

a theoretically unnecessary message. We provide the full

3

annotated programs and tool implementation in the arti-

[132]: Rubbens et al. (2024), Vey-
Mont Permission Annotations Tic-
Tac-Toe Case Studies and Tool Im-
plementation

fact [132].

The TTT case study is a variant of the case study discussed
in [36]. It is set up to simulate a game of tic-tac-toe on a
3x3in a distributed setting. This means each endpoint has



its own local copy of the board, and as the endpoints take
turns they send their moves to each other so the boards
stay in sync. When a winning move occurs, or the board
runs out of spaces, the game ends.

While each case study has different annotations, the post-
condition proven is the same: after the game terminates, the
boards of the two players are identical.

This postcondition highlights the complexity of verifying
an easy to understand choreography. To prove correctness,
VeyMont must prove that each move made by one player
is also applied to the local board of the other player. This
kind of property could also occur when e.g. executing a
transaction in a distributed database. When verifying the
TTT choreography and ignoring permission stratification,
the property is proved automatically. However, once the
endpoints are split up into threads with the endpoint pro-
jection, a problem arises: the property becomes impossible
to state. This is because the property requires player one to
make an assertion about the state of player two, and vice
versa.

Each case study solves this problem differently. The TTT
case study solves the problem by using \chor. This allows
violating the restriction of stratified permissions, at the cost
of missing annotations in the generated implementation.
Case studies TTTy,sg and TT Ty, use stratified permissions
to pass permissions back and forth, ensuring the players
can alternate reading and writing to both boards safely.
Specifically, TTTy,s, introduces an extra message at run-
time, and TTTj, eliminates this run-time overhead by us-
ing more complicated annotations. For TTTy,sp and TT T,
the generated implementations do verify.

TTT The TTT case study is similar to the case study pre-
sented in [36]. The only changes are the reduction to a
3 x 3 board instead of an M x N board, and minor syntacti-
cal changes. This is not a limitation of this is chapter, it is
merely a simplification for ease of presentation. The chore-
ography of TTT is shown in Fig. 5.9. After the endpoints
are initialized, the endpoints enter a loop, where they al-
ternate taking turns. After each turn, the move is send to
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choreography TTT() { 15 pl.createNewMove();
endpoint pl = Player(0, true); 16 communicate pl.move.copy() -> p2.move;
endpoint p2 = Player(1, false); 17 } else {
18 p2.createNewMove();
requires pl.myMark == 0 ** 19 communicate p2.move.copy() -> pl.move;
p2.myMark == 1 ** 20 3
(\chor pil.turn != p2.turn ** 21 pl.doMove();
pl.equalBoard(p2)); 22 p2.doMove();
ensures (\chor pl.equalBoard(p2)); 23 pl.turn := !pil.turn;
run { 24 p2.turn := !p2.turn;
loop_invariant /* omitted */ ** 25 3
pl.equalBoard(p2); 26 3
while(!pl.done() && !p2.done()) { 27 |}

if(pl.turn && !p2.turn) {

Figure 5.9: Main choreography of the TTT case study. The loop invariant on line 11 is omitted as it is the same

as the precondition of run.

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

the other player so they can update their board. The post-
condition is (\chor pil.equalBoard(p2)), meaning the
board of p1 is equal to that of p2 after termination. With au-
tomatic permission generation enabled, VeyMont can ver-
ify the choreography with the initial approach presented
in [36]. The projection on these (old style) choreographies
yields generated implementations where the choreography
properties hold [80], but verification annotations marked
with \chor are not present in the generated implementa-
tions, and hence the choreography postcondition cannot
be verified on it.

TTTysg Wetake adifferentapproach to avoid \chor: each
endpoint will only keep half permission for their own board.
The other halves are pooled and used to establish and main-
tain board equality. After each turn, these pooled permis-
sions are sent to the other player. Finally, when the game

ends, the last player splits the pooled permissions sends

half to the other player. This gives both players read per-
mission to both boards, allowing them to state board equal-

ity.

To this end, we add to both communications in the while
loop the channel invariant of Fig. 5.10a. The sending player
provides 1\2 permission for his own board, and the other
players board, in the channel invariant (using prefix scal-
ing notation [1\2] before the predicate on lines 3 and 4).
This invariant implies that the sending player is exactly
one move ahead (line 5). This makes sense as the receiving
player still has to update the board with the communicated
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if (pl.turn && !'p2.turn) {
channel_invariant
[1\4]\sender.boardPerm() **

channel_invariant ;
3
4 [1\4]\receiver.boardPerm() **
5
6
7

1
2 \msg.movePerm() **

3 ([1\2]\sender.boardPerm()) **
4 ([1\2]\receiver.boardPerm()) **
5

\sender.oneMoveAheadOf (\msg, \receiver); \receiver.equalBoard(\sender);

communicate pl: true -> p2;

}

(a) Channel invariant of the communications in

while loop (b) Communication at game end

Figure 5.10: Communications in TT Ty, case study.

move after the communication. Each player always keeps
1\2 permission for his own board.

At each point in the game, only one of the players can read
both players’ boards, thus only one player is able to verify
that the boards are equal. When the game ends, one of the
players sends 1\4 permission for both boards to the other
player. Figure 5.10b shows this for p1. This way, postcondi-
tion p1.equalBoard(p2) can be stated by both endpoints
without \chor, and hence proven directly for the whole
generated concurrent program.

TTTi.st We optimize away the communicate statement
after the while loop, while still retaining correctness. We
do this by introducing additional ghost state and reformu-
lating the annotations to be more general. In doing so, we
demonstrate a trade-off: run-time overhead can often be
eliminated, at the cost of additional complexity in the con-
tracts and ghost state.

Specifically, we use the following two extra fields to ref-
erence ghost state: p1.lastPlayer and p2.lastPlayer.
These store a reference to the same object, which stores the
mark of the “last player”. In Fig. 5.11b we see that, just be-
fore communicating a move, p1 checks if this move ended
the game. If so, p1.lastPlayer is set to p2.myMark, be-
cause p2 will be the last player updating his board, before
the game ends. The predicate p1. lastPlayerPerms () spec-
ifies write permission to the mark field of its lastPlayer
object. If the game is not finished yet, p1 includes the full
permission (1\2 + 1\2) in the channel invariant, so that p2
may (possibly) edit it. Otherwise, if the game is finished,
only 1\2 permission is sent, such that both players can
read their lastPlayer.mark field to see who was the last
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ensures (\endpoint p1;
([1\2]p1l.lastPlayerPerms()) **

pl.lastPlayer.mark == pl.myMark ==>

([1\2]p1.boardPerm() **
([1\2]p2.boardPerm()) **
pl.equalBoard(p2));

(a) Postcondition of run method.

if (pl.gameFinished()) {
pl.lastPlayer.mark = 1 - pl.myMark;

}

channel_invariant /* ... */

([1\2]\sender.lastPlayerPerms()) **

(!\sender.gameFinished() ==>

([1\2]\sender.lastPlayerPerms()));
communicate pl.move.copy() -> p2.move;

[ e R O N

(b) Code for marking the last player, and the chan-
nel invariant extension.

Figure 5.11: Adapted code of TTTj, with respect to TT Ty, stated for p1. It is symmetric for p2.
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player. In Fig. 5.11a we show the adapted postcondition of

run: the player whose mark is stored in its lastPlayer .mark

field can ensure p1.equalBoard(p2). This postcondition

ensures that when both endpoints terminate in the gener-

ated implementation, VeyMont will conclude that whichever
endpoint is the last player, there will always be one of them

that will guarantee board equality. In this way, p1.equalBoard(p2)
can be proven directly for the whole generated program.

5.6 Related Work

Besides the works we build upon by extending VeyMont
[36, 80], the most similar research in the realm of VerCors is
the work by Darabi et al. [31]. They introduce the send and
receive statements to model loop dependencies. These
statements allow sending permission to other iterations of
a loop, and are similar to communicate. However, these
statements are only supported inside loops, offer no sup-
port for sending a value, and conditional sends can only
depend on variables not modified inside the loop.

Similar works in the area of choreographies are on logics
to reason about the correctness of choreographies [41, 52].
These works could serve as a basis for formalizing the ap-
proach outlined in this chapter, but they would have to be
extended with support for separation logic.

We see interesting correspondences with multiple works
on session types. Generally, session types do not support
implementation generation. In theory, session type results
may be transferable to choreographies, but this step is non-
trivial.



Hinrichsen et al. introduce Actris, a Coq framework us-
ing Iris for correctness reasoning over session types [70].
Jacobs et al. [76] introduce similar but smaller formaliza-
tion of dependent session protocols, also in Iris. Both ap-
proaches are powerful, but being Coq frameworks, lack the
automation we aim for in this chapter. They could be good
starting points for formalizing our approach.

Neykova et al. [112] present SPY, a tool that generates run-
time monitors of user-defined constraints on exchanged
messages and endpoint state. Our approach works with-
out running the code, and introduces no overhead at run-
time.

Bouma et al. [37] use VerCors to check conformance of
Java programs to a multi-party session type (MPST). Specif-
ically, they use permissions only at the implementation
level, while we already use permissions at choreography-
level.

Marques et al. present an approach to verify that C pro-
grams written using MPI [104] follow a protocol defined
using a session type [99]. Their tool allows constraints to be
expressed over messages sent and received, which is an ex-
tended version of session types. However, the constraints
are limited to (in-)equalities of arithmetic expressions and
variables, while we support general first-order logic expres-
sions. The tool also has no support for shared memory or
ghost state.

Zhou et al. [161] present Session*, a tool that extends the
Scribble protocol language [158] with refinement types by
compiling Session™ protocols to F* [148], a functional pro-
gramming language with refinement types. Because muta-
ble memory is supported within the generated callbacks
implemented in F* through an effect system, Session* sup-
ports a limited form of mutability indirectly. We support it
generally, allowing sharing mutable memory across imple-
mentation callbacks and reasoning about it in contracts.

Swamy et al. [149] formalize a minimal 2-party session type
framework as an example use of the SteelCore separation
logic framework in F* [148]. They do not offer specialized
support for correctness reasoning of session types or the
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transfer of resources via session types, beyond what F* of-
fers natively. We foresee that our approach could be em-
bedded in F* using SteelCore.

Bocchi et al. [33] present a formal framework for applying
design-by-contract to session types. The “global assertions”
from their work are similar to contracts in VeyMont chore-
ographies. Besides the difference between session types and
choreographies, Bocchi et al. also do not support shared
memory. They do define well-assertedness of global asser-
tions to e.g. prevent endpoints from using values they do
not know about. We resolve this by using permission strat-
ification.

Finally, Proust et al. [128] have integrated the Why3 [32]
program verifier with the Bulk Synchronous Parallel (BSP)
model. The version of BSP in this work shares some aspects
with OpenMP, as it offers parallelized versions of common
operations, such as map and fold. In addition, BSP offers
choreography-like many-to-many communication. There
are two differences with our work. First, code written using
the BSP API can only be executed in an environment that
provides such an API. VeyMont generates plain Java & PVL
code that can be verified and only needs the standard li-
brary. Second, Proust et al. only consider purely functional
programs, while VeyMont supports reasoning about muta-
ble variables and shared memory.

5.7 Conclusion

VeyMont could already verify choreographies, auto-generate
permissions, and use the endpoint projection to generate
an implementation. In this work, we added endpoint own-
ership annotations and channel invariants to VeyMont, such
that choreographies can specify concurrent programs with
shared memory between threads. Additionally, we trans-
fer verification annotations to the generated implementa-
tions, such that they can be verified directly, without the
choreography. We showed the new capabilities of extended
VeyMont in case studies.

For future work, we first of all aim to introduce parameter-
ized endpoints, such that distributed systems with any n



number of nodes can be formulated as choreography. Also,
adding support for one-to-many or many-to-one communi-
cations would make VeyMont more expressive. While we
now use verification of choreographies and the generated
implementations to ensure correctness of the projection,
we would also like to formalize our approach, i.e. extend
[80]. Finally, by doing more case studies, we will validate
our approach more extensively.
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Verified Parameterized
Choreographies

Choreographies are useful for modelling systems with mul-
tiple simultaneously executing and communicating partic-
ipants, e.g. distributed systems. As described in previous

chapters, VeyMont can verify correctness of choreographies
and generate verifiably correct code that implements the

choreography, narrowing the gap between design and im-
plementation of distributed systems. Up until now, it sup-
ported only fixed sets of participants. However, realistic

systems are often parameterized: they scale according to

some parameter N. In this chapter we extend VeyMont with
parameterized choreographies, making VeyMont more us-
able for realistic case studies. Specifically, we add param-
eterized primitives such as participant families and param-
eterized communication. We encode these primitives using

a structured parallelism primitive from the underlying ver-
ifier VerCors, and by using conditionals in the endpoint

projection, partially delaying projection until run time. We

illustrate the encoding with a distributed summation chore-
ography, and prove it correct with VerCors.

6.1 Introduction

Distributed systems are not just ubiquitous, they are indis-
pensable for networked systems on a global scale. Unfor-
tunately, guaranteeing robustness of distributed systems is

This chapter is based on “Verified Parameterized Choreographies” by
Rubbens, Van den Bos, and Huisman [135], published at COORDINA-
TION 2025.
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1 | choreography summation2() { 1 | choreography summationN(int N) {
2 endpoint a = Node(int()); 2 endpoints nodes[i := 0..N] = Node(i, int());
3 endpoint b = Node(int()); 3 run {
4 run { 4 while ((\endpoints nodes[i := 0..N]; nodes[i].n < N-1)) {
5 communicate a.sum -> b.in; 5 communicate nodes[i := 0..N-1].sum -> nodes[i+1].in;
6 communicate b.sum -> a.in; 6 communicate nodes[N-1].sum -> nodes[0].in;
7 a.update(); b.update(); 7 nodes[i := 0..N].update();
8 3 8 3
913 9 3
10 | 3

(a) For two endpoints a and b
(b) Parameterized for N endpoints

Figure 6.1: Distributed summation choreographies

still a challenge. Consider a participant of a distributed sys-
tem, waiting for a message that will never be sent. Clearly,
this system cannot function reliably. This type of bug is
called a communication deadlock, and ideally a distributed
system would be free of deadlocks. Another aspect of ro-
bustness is that of functional correctness: maybe the dis-
tributed system never deadlocks, but does the system actu-
ally compute the correct result?

An approach to improve the reliable development of dis-
tributed systems is to use the top-down formalism of chore-
[105]: Montesi (2023), Introduc-  ographies [105]. In its purest form, a choreography is a se-
tion to Choreographies ries of message exchanges between participants, called end-
points. Choreographies have two primary properties [105].
The first is communication deadlock freedom: no endpoint
will be stuck waiting for a message that will never be sent.
The second is message fidelity: an endpoint will never re-
ceive a message of a different type than it is expecting.
Choreographies also support the endpoint projection, which
generates an implementation for a given endpoint.

Figure 6.1a shows an example of a choreography that sums
the values of two endpoints. Lines 2 and 3 declare the end-
points a and b of type Node, and initialize their sum fields
with a random integer. On lines 5 and 6 each endpoint
sends their local sum to the in field of the other. On line 7,
they update their sum fields with the sum of their initial
value and the value of the in field. The sum field of each
endpoint now contains the sum of both the initial values.
As an example in Java-like syntax, the endpoint projection
of Fig. 6.1a for endpoint b is:



b.in = chan_ab.readvalue();
chan_ba.writevalue(b.sum);
b.update();

To verify choreographies like Fig. 6.1a, VeyMont was devel-
oped, a verifier and code generator for choreographies [36].
It supports functional correctness verification of choreogra-
phies with contract annotations, such as pre- and postcon-
ditions and asserts. When generating code with VeyMont,
verification annotations are preserved [133], which means
correctness of the generated code can be established inde-
pendently from the initial choreography. This allows safe
modification of generated code. VeyMont is built on top
of VerCors, a deductive verifier for concurrent and parallel
software. Besides languages such as Java and C, VerCors
also supports the internal Prototypical Verification Language
(PVL), a Java-like language intended for rapid prototyping
of verification features.

To verify a choreography, VeyMont applies the choreographic
projection, which transforms a choreography into a PVL
program that combines the behaviour of all endpoints into
a single program [36]. This is in contrast to the endpoint
projection, which slices a choreography in such a way that
only the parts relevant for one specific endpoint remains.
The choreographic projection has two goals: 1) to make the
choreography verifiable with an off-the-shelf program ver-
ifier like VerCors, and 2) to add annotations for correctness
aspects such as deadlock freedom and memory safety. The
first goal is achieved by modelling communication with
regular assignment, and preserving composite statements
such as if and while. To illustrate, the choreographic pro-
jection for Fig. 6.1a is:

b.in = a.sum; a.in = b.sum;
a.update(); b.update();

The second goal is achieved by encoding correctness as-
pects into PVL [36, 133]. Then, if the projection is verified,
the choreography respects its contracts [80].

However, verifying regular choreographies is not enough.
Instead, realistic case studies often scale with some param-
eter N, and hence require parameterized choreographies. In
Fig. 6.1b a distributed sum choreography is parameterized
by N (line 1). Instead of defining endpoints individually,
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line 2 defines an endpoint family, which is a range of end-
points, its size determined by a symbolic expression. The
choreography in Fig. 6.1b generalises the approach from
Fig. 6.1a: for N — 1 rounds, each node will send its partial
sum to a neighbouring node, as done on lines 5 and 6. Then,
each node will update its partial sum (line 7), after which
the while loop will repeat. When the while loop terminates,
each node will know the sum of all initial values.

Parameterization of both the choreographic and endpoint
projection is still an open problem. To enable verification
and code generation for choreographies like Fig. 6.1b, this
chapter discusses how to extend VeyMont with parameter-
ization.

Contributions We define choreographies with parame-
terization by adding parameterized primitives to the chore-
ographic language of VeyMont (Section 6.2). In particular,
we add endpoint families, which are ranges of endpoints
with their size defined by a symbolic expression. We also
add a parameterized communication statement, which com-
municates a message according to a user-defined one-to-
one mapping between two possibly overlapping endpoint
family ranges.

To verify parameterized choreographies, we extend the chore-
ographic projection to use a structured parallelism primi-
tive, the par block, to encode the semantics of the parame-
terized communication statement (Section 6.3). We identify
a fragment of the choreographic language for which mem-
ory safety annotations can be automatically generated, pre-
serving full automation of the verification process. E.g. we
limit the syntax of the parameterized communication state-
ment such that it may only access memory in a certain pat-
tern. Other parameterized syntax, such as endpoint fami-
lies and parameterized expressions, can be encoded using
mathematical sequences and universal quantifiers. We also
extend pre-existing VeyMont features (deadlock freedom

[36]: Van den Bos et al. (2023), and shared memory [36, 133]) to support parameterization.

VeyMont: Parallelising Verified

Programs Instead of Verifying Par- o support parameterization, the endpoint projection must

P . .
[all 283[] . gﬁgﬁfs et al. (2024), Vey- generate an implementation for an unknown but fixed num-

Mont: Choreography-Based Gen-  Der of endpoints (Section 6.4). This is important, because in

eration of Correct Concurrent Pro-
grams with Shared Memory



a parameterized choreography, the sizes of endpoint fami-
lies are defined by symbolic expressions. We make part of
the endpoint projection conditional on the runtime value of
endpoint family indexing expressions, effectively delaying
projection until run-time. That way, instead of generating
one implementation per endpoint, we generate an imple-
mentation for a range of endpoints, which behaves based
on the run-time value of the current endpoint index. This
encoding provides executable code with preserved verifica-
tion annotations, allowing deductive verification separate
of the choreography.

We illustrate the choreographic and endpoint projection
with the distributed sum running example, which we have
proven correct with VerCors in the artifact [139]. Finally,
we discuss related work (Section 6.5).

6.2 Choreographies

We will next define the syntax for parameterized chore-
ographies, as well as give an intuition for the semantics

(Section 6.2.1). The parameterization extension also requires
integration with existing deadlock freedom [36] and shared

memory [133] support of VeyMont (Sections 6.2.2 and 6.2.3).
Finally, we introduce the full distributed summation run-
ning example (Section 6.2.4).

6.2.1 Syntax

The syntax for choreographies in VeyMont is shown in
Fig. 6.2. The description in this section follows the order
in this figure. We also informally describe its semantics.
Sections 6.3 and 6.4 describe the actual semantics of chore-
ographies by defining two transformations into the OOP
fragment of PVL.

Choreographies are top-level definitions located in the same
scope as PVL classes. Therefore, choreographies can ref-
erence types and call methods from PVL classes. E.g. in
Fig. 6.1, endpoints are declared using the Node PVL class.
In addition, in Fig. 6.2 the following syntax elements are
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e,a,b ::
F,G ::
chor ::

Dchor

r,p
a,p o

Schor

endpoint

endpoint family

K choreography(ﬂ) { Thor}
= K run { Sgpor } | endpoint e = C(H);
endpoint F[v :=0 .. H] = C(E);

= E .. E]
if (Hehor) Schor Schor | @ssert Repor; I €ndpoint a: Spp

| loop_invariant R.,-; while (H.por) Schor

| channel_invariant R.,,; communicatea: H ->a: H;

Sep

:::H.m(ﬁ); |H := H;

Hopor := (\endpoint a; H) | Hopor && Hopor

Repor = (\endpoint a; R) | Renor ** Renor | Hehor
Repan :=Inline R I \msg | \sender | \receiver

Figure 6.2: Choreographic fragment

reused from the PVL grammar from Chapter 2: K is a con-
tract, E is a pure expression (no heap access and no side-
effects), H is equal to E except it might read heap locations,
and R is equal to H except it can also contain permissions
and predicates.

Declarations A choreography consists of a contract, a se-
ries of arguments, and a series of choreographic declara-
tions, which can be an endpoint, an endpoint family, or a
run declaration. A single endpoint has a name (e, a, or b),
a class type C and an argument list. The argument list is
passed to the constructor at run-time, which creates an in-
stance of C to represent the endpoint.

A parameterized endpoint is an endpoint family, which ad-
ditionally has a size parameter. Note that this parameter
can be symbolic. Therefore, to verify or generate code for
parameterized choreographies, one must either use e.g. an
SMT solver that can do so symbolically, or somehow delay
inspection of this size until run-time, when the symbolic
parameter is instantiated. The parameter is also allowed to



depend on the heap. This is because the parameter is eval-
uated before the endpoint family is initialized. When each
member of an endpoint family is constructed at run-time,
the binder v is also in scope, which contains the index of
the current endpoint within the endpoint family. The end-
point family is represented at run-time as a sequence of
instances of C. An example of a parameterized endpoint is
shown in Fig. 6.1b on line 2.

The run declaration has a contract and a series of choreo-
graphic statements. Essentially, each endpoint executes the
run declaration by only executing the choreographic state-
ments related to the endpoint. The contract of the run dec-
laration differs from the choreography contract as follows:
the choreography precondition holds before endpoint ini-
tialization, the run precondition holds after initialization
and before run is executed. Conversely, the run postcon-
dition holds when an endpoint finishes, the choreography
postcondition holds after all endpoints have finished. Ex-
amples of run declarations are in Figs. 6.1 and 6.3.

Endpoint references There are two notations for endpoint
references: r and a. The notation r refers to a particular end-
point, which can be be either a singular endpoint e, or a
family F indexed by a pure expression. E.g. F[N-1] selects
the last endpoint of a family F of size N. The notation « ex-
tends r with ranges of endpoint families as follows: F[i :=
E; .. Ej], for afamily F, a binder i, and a half-open range
[E, Ep). E.g. F[tid := N/2..N] refers to all endpoints of

F with index € [g N). In this case, the family has to have
at least size N. The binder i is also used in endpoint expres-
sions, explained later. This notation is inspired by related
work of Ng et al. [114], as discussed in Section 6.5.

Indexing into endpoint families using « is only allowed
with pure expressions E. This is deliberate, as it ensures
any indexing operation is heap independent, meaning no
permission annotations are necessary for endpoint family
indexing. This also ensures any indexing operation can be
executed by any endpoint of a choreography. This allows
evaluating indexing expressions in any endpoint context,
which is important for communication statements, discussed
later.
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[114]: Ng et al. (2015), Pabble: pa-
rameterised Scribble
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Statements Branches, asserts and loops are choreograph-
ically transparent: they are only executed by the endpoints
that occur within them. If an endpoint is not mentioned
in a choreographically transparent statement, the endpoint
skips it.

An endpoint statement is a local action of an endpoint. It
requires an @, meaning the action can apply to a singu-
lar endpoint or a family range. We allow method calls and
assignments on endpoints. For example, in the statement
“endpoint e: e.m()” the method call e.m() will be ex-
ecuted by endpoint e. The formal syntax for endpoint state-
ments is slightly more general than what the choreographic
and endpoint projection can handle. For example, parame-
terized endpoint statements can only do method calls di-
rectly on endpoints. We enforce these restrictions syntacti-
cally, and further discuss them in Section 6.3.

A communicate statement specifies communication. Through
the a notation, communication can either be between two
singular endpoints, or between two family ranges with an
injective mapping. Injectivity is ensured by both the chore-
ographic and endpoint projection through explicit checks.
Communication statements consists of a channel invariant,
a sending endpoint, the message to be sent, the receiving
endpoint, and the destination in which the message will be
received. The channel invariant specifies a property over
the message, i.e. an invariant over values in the channel.
The endpoint projection (Section 6.4) creates a channel for
[36]: Van den Bos et al. (2023), each communicate [36, 133]. The primitives \sender, \re-
VeyMont: Parallelising Verified  ceiver and \msg may be used to refer to the sender, re-
Programs Instead of Verifying Par- . . . . .
allel Programs ceiver, and message respectively in the channel invariant.
[133]: Rubbens et al. (2024), Vey-  For example, channel_invariant \msg > 2 specifies all
Mont: Choreography-Based Gen-  messages sent over the channel must be bigger than 2. Ex-
eration of Correct Concurrent Pro-  amples of singular and parameterized communicate state-
grams with Shared Memory R
ments are shown in Fig. 6.1.

For both endpoint and communication statements, when-
ever the endpoint annotations are obvious, they are omit-
ted. E.g. in communicate a.x -> b.y, we omit the a: and
b: annotations.

Expressions We distinguish two kinds of choreographic
expressions. The first expression type is H,,, which is es-



sentially a list of endpoint expressions, composed using &&.
An endpoint expression is an expression tagged with the
endpoint that should evaluate it. If the endpoint expres-
sion introduces a binder, this binder can appear inside the
tagged expression. E.g. consider this expression:

(\endpoint F[i := 0 .. N]; F[i].x ==1i)

This states that endpoints in family F have a field x equal
to the endpoint index. In addition, when an endpoint eval-
uates the endpoint expression, it must do so using only its
own memory. This is further explained in Section 6.2.3. The
second expression type is R.or, Which is similar to Hp,,
except that R, can also introduce permissions, and com-
pose them with the separating conjunction **.

6.2.2 Deadlock Freedom

Deadlocks occur if an endpoint is waiting for a message
that will never be sent. This can happen when branches are
involved. Consider the choreography communicate a.x
-> b.y; ..., which is just a series of communications
and local actions. Because of the simple structure of this
choreography, each send is guaranteed to be paired with
a receive, and hence it cannot deadlock. Now consider the
choreography if (a.x && b.x) communicate a.y ->
b.y, which consists of one branch and one communicate.
Here, a deadlock is possible: when !'a.x && b.x holds, b
will enter the body of the if statement, and a will skip it.
This is because of the semantics of choreographic expres-
sions, where a will only execute expressions relevant to a,
and vice versa for b. This will result in b waiting for a mes-
sage, even though it will never be sent, because a skipped
it.

To prevent deadlocks, choreographies need branch unanim-
ity [36]. A branch is unanimous if the condition of a branch
evaluates to the same value for each participating endpoint.
In other words, all endpoints have to agree “unanimously”
on the condition of the branch. VeyMont checks this au-
tomatically [36]. Taking the previous example, the branch
is unanimous if a.x == b.x always holds before the if.
Branch unanimity also applies to while loops, and hence
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[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs
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[133]: Rubbens et al. (2024), Vey-
Mont: Choreography-Based Gen-
eration of Correct Concurrent Pro-
grams with Shared Memory

ensures that either both endpoints encounter the commu-
nicate statement, or they both skip it, and not something
in between. For a finite set of endpoints, a verification con-
dition for branch unanimity is straightforward to generate,
following the example above. We extend branch unanimity
for endpoint families in Section 6.3.5.

6.2.3 Shared Memory

Supporting shared memory in choreographies requires mem-
ory safety annotations. For example, the statement end-
point a: b.x := y (a assignsy to b.x) is safe if and
only if endpoint a has write permission for b. x.

VeyMont supports endpoint ownership annotations to bind
a permission to an endpoint [133]. E.g. (\endpoint a;
Perm(b.x, 1)) states that a needs write permission for
b.x. VeyMont checks if endpoints in a choreography do not
use memory that they do not own by transforming the end-
point ownership annotations into PVL permissions. This
is done as part of the choreographic projection [133]. Sum-
marizing, the permission from the previous example would
be transformed into Perm(b.x, 1, a), using a special en-
coding to put the endpoint owner as metadata in the per-
mission. The transformation also guards all field accesses
as follows. First, the transformation generates the function
read_f:

requires Perm(o.f, 1, e);
int read_f(endpoint e, object o) = o.f;

The precondition of read_f forces permission with proper
metadata to be available at every field access. The transfor-
mation also replaces every field access with an invocation
of read_f. E.g. the expression (\endpoint a; b.f > 0)
is transformed into read_f(a, b) > 0.

The shared memory support of VeyMont is straightforward
to integrate with parameterization, because parameterized
permissions can be encoded using universal quantifiers. This
is sufficient, as quantifiers are natively supported by the
underlying verifier VerCors. The only integration required
is for the choreographic projection to explicitly apply the



requires N >= 2;
choreography summation(int N) {
endpoints ns[i := 0..N] = Node(i, int());
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requires (\endpoints ns[i := 0..N]; ns[i].sum == ns[i].v);
ensures (\endpoints ns[i := 0..N]; ns[i].sum == sum(ns, 0, ns[i].n));
run {
invariant (\endpoints ns[i := 0..N]; ns[i].sum == sum(ns, ns[i].i, ns[i].n));
while ((\endpoints ns[i := 0..N]; ns[i].n < N-1)) {
channel_invariant \msg == sum(ns, \sender.i, \sender.n);
communicate ns[i := 0..N-1].sum -> ns[i+1].in;
channel_invariant \msg == sum(ns, \sender.i, \sender.n);

communicate ns[N-1].sum -> ns[0].in;
ns[i := 0..N].update(); } } }

shared memory encoding. This is done by using the con-
fined memory mode operator, introduced in Section 6.3.

6.2.4 Running Example: Distributed
Summation

We now formulate a ring-based distributed summation al-
gorithm as a choreography. It will also be used to illustrate
the choreographic projections.

Algorithm encoding In the choreography in Fig. 6.3, each
endpoint only communicates with its two neighbouring
endpoints (resp. predecessor and successor), simulating a
ring topology of size N. An endpoint initially knows only
its own value. The goal is that each endpoint eventually
knows the sum of the values of all endpoints. The sum is
calculated using the sum function, with parameters: a se-
quence of nodes, the starting index and the number of in-
dices to include in the sum. At each iteration, the endpoints
send the current partial total to their successor. Then, they
receive a partial total from their predecessor, and add their
own local value to it. This yields a new total. After looping
N — 1 times, each endpoint knows the network total.

A key difference between the algorithm and the choreo-
graphic encoding is how the network structure is encoded.
Instead of using the modulo operator, we apply an insight
from previous work and “linearize” the ring communica-
tion into two separate communications [56, 114]. One is
parameterized over the range 0 to N — 1, and the other com-
munication is from N —1 to 0, closing the loop. This shows

Figure 6.3: Distributed summa-
tion choreography

[56]: Deniélou et al. (2012), Pa-
rameterised Multiparty Session
Types

[114]: Ng et al. (2015), Pabble: pa-
rameterised Scribble
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that circular topologies can be encoded using simpler lin-
ear structures.

Verification outline The choreography contains several
verification annotations, which give an outline of the cor-
rectness proof. Essentially, as partial sums are communi-
cated between endpoints, the partial sum of each endpoint
converges towards the true total in N — 1 iterations.

Permission annotations, ghost state and proof steps neces-
sary to verify Fig. 6.3 are omitted for ease of presentation.
In particular, verification requires a lemma that uses the
symmetry of addition to show that a sum starting at end-
point ns[i] equals the sum starting at endpoint ns[j]. The
version with full verification annotations is available in the
[139]: Rubbens et al. (2025), Arte-  artifact [139]. In particular, we verified that each endpoint

fact of: Verified Parameterized  computes the same network total.
Choreographies

6.3 Choreographic Projection

We will now discuss the choreographic projection opera-
tor {-J. Its purpose is to encode the choreography into a
PVL program that VerCors can verify. This way, if the PVL
program verifies, the choreography is correct. Otherwise,
there might be a bug, either in the choreography, or in its
specification.

To encode parameterized constructs, we use two primitives
from the underlying verifier VerCors: the par block for
structured parallelism and universal quantifiers. We impose
restrictions on the allowed syntax to ensure the required
annotations can be generated automatically. For non-parameterized
constructs, the encoding transforms all communicate state-
ments into plain assignments, and keeps other primitives,
ie. if, while, assignments and method calls. Effectively,
the choreographic projection picks a representative inter-
leaving of all possible interleavings of choreography, and
then encodes it in plain PVL. This is sound, as each end-
point is also verified to be memory safe. Memory safety
guarantees non-interference, and therefore the behaviours
of all interleavings are equivalent.
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communicate a: a.balance > a.n -> b: b.ok;

b.ok = a.balance > a.n;

assert a.balance > a.n == b.ok;

1 1
2 2
3 |if (a.balance > a.n && b.ok) { 3
4 communicate a.n -> b.n 4 b.n = a.n;
5 a: a.balance := a.balance - a.n; 5
6 b: b.balance := b.balance + b.n; } 6

(a) Input choreography. (b) Output PVL.

Figure 6.4: Encoding of a choreography that models a bank transfer.

The choreographic projection operator has two modes. The
plain mode, written as {-}, encodes the choreography as a
sequential object-oriented PVL program, while adding ad-
ditional checks for deadlocks. The confined memory mode,
written as {-},, ensures the argument is encoded such that
only memory of endpoint r is used (see Section 6.2.3). The
confined memory mode is used by the plain mode when an
endpoint context annotation occurs.

We only list the rules that are key to transforming the ex-
amples. The full listing can be found in [136]. Note that the
choreographic projection results in a program intended for
verification. The resulting program is an abstracted version
of the choreography, which behaves as if all endpoints are
sharing one thread, yet does not exclude any concurrent
behaviours. Transformation for the purpose of execution is
done by the endpoint projection explained in Section 6.4.

6.3.1 Non-Parameterized Example

To give an intuition for the choreographic projection, we
first show a concrete example. Figure 6.4a shows the in-
put choreographic code. Figure 6.4b shows the output PVL
code, created using the choreographic projection {-J. There
is a close correspondence between the left and the right
listing: each statement is encoded using the correspond-
ing rule from Fig. 6.5. The only new statement is the as-
sert, added by rule CpIFr, which checks deadlock freedom
(see Section 6.2.2).

if (a.balance > a.n && b.ok) {

a.balance = a.balance - a.n;
b.balance = b.balance + b.n; }

[136]: Rubbens et al. (2025), Ver-
ified Parameterized Choreogra-
phies Technical Report
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CprIF
. { assert unanimous(H);
if (H) S S = .
B (H) Serve Srasel = 7 56 (11]) {Suruel 1Srarsel 3
CPASSIGN
{r: Hpe := Hv;l}:{U_Iloc]}r = {[Hv]}r;
CpCoMM

channel_invariant Ry(\msg, \sender, \receiver); .
communicate r: Hpge -> pi Hyg; -

{T v = {Hugl;
exhale {R;(v, r, p)};
inhale {Ri(v, r, p)b,;
{[Hdstl}p =v;}

Figure 6.5: Non-parameterized choreographic projection rules

6.3.2 Non-Parameterized Projection Rules

We will now discuss the rules required to transform the ex-
ample in Fig. 6.4, shown in Fig. 6.5. Rule CPASSIGN pattern
matches on the subparts of the choreographic assignment
statement on the left side of =, and shows how to construct
the projected statement on the right. In this case, the chore-
ographic projection is applied to Hj,, and H,, removing the
endpoint labels from the resulting statement. Within rules,
subscripts such as loc and v are only to clarify intention.
However, for {-},, and later [],, the subscript is significant:
{-}, enables the confined memory mode, confining the ex-
pressions to the memory owned by r. Note that this rule is
only applicable for any endpoint r, meaning singular end-
points e as well as an indexed family F[i].

The rule CPIF adds a deadlock freedom assert, and then for-
wards the choreographic projection to the subexpression
and sub-statements. The unanimous transformation func-
tion, which computes a verification condition for deadlock
freedom, is further discussed in Section 6.3.5. As there is no
endpoint context on the sub-statements, the confinement
memory mode is not used here.

Rule CpCoMM encodes the sending of message Hyg to
location Hyg, while transferring the channel invariant Ry
fromr to p. This is done as follows. First, the message value
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assert

channel_invariant

\msg == sum(ns, \sender.tid, \sender.n);
communicate

nodes[i := 0..N-1].sum -> nodes[i+1].in;

(a) Input communication

= O 000NN UT R W -

_ =

(b) Output PVL

Figure 6.6: Encoding of a parameterized communicate from Fig. 6.3

v is computed, confined to the memory of r. Then, the per-
missions in the channel invariant are removed using ex-
hale, using the confined memory mode to ensure only per-
missions of r are removed. To determine the permissions
to be exhaled, a substitution operation is applied. The no-
tation Ry(v, r, p) replaces, in Ry, every occurrence of \msg
with v, \sender with r and \receiver with p. E.g. \msg >
0 would become v > 0 after substitution. This substituted
invariant is added to the state of p using inhale, and then
the value is written to the destination location.

6.3.3 Parameterized Example

(\forall int i, j = 0..N-1;
i+l == j+1 ==> i j
par (int i = 0..N-1)
context Perm(ns[i].
Perm(ns[i+1].1in,
requires ns[i].sum
ensures ns[i+1].in
{ int v = ns[i].sum;
exhale ...; inhale ...;
ns[i+1].in = v; }

= j);

sum, €, ns[i]) **

1, ns[i+1])

== sum(ns, ns[i].tid, ns[i].n)
== sum(ns, ns[i].tid, ns[i].n);

’

Figure 6.6 shows an example application of rule CPCOMMRANGE

(Fig. 6.7). Note the use of the three-argument Perm predi-

cate to indicate permissions with additional metadata (see Sec-

tion 6.2.3). The inhale/exhale statements respectively re-
peat the requires/ensures expressions, and are hence ab-
breviated in this figure.

6.3.4 Parameterized Projection Rules

The transformation rules for parameterized choreographies
are shown in Fig. 6.7. Rule CPCOMMRANGE encodes a pa-
rameterized communication between two endpoint fami-
lies. It is essentially a regular communication, wrapped in
a par block. This is crucial: if all message transfers can hap-
pen independently in parallel, they can be safely split up
into separate threads, as is done by the endpoint projec-
tion. Before the par block, an assert is generated which
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checks injectivity of the expression d over the given range
[E;, E) of the communicate. This assert ensures the sender-
receiver relation is injective, i.e. for each sender there must
be exactly one receiver, and vice versa.

Note how the syntax of message and destination fields is
restricted: fields can only be dereferenced on an indexed
family F[i]. This is in contrast with rule CPComMmM, where
the object is a heap-dependent expression. This restriction
ensures the entire process of projection stays automatic.
Allowing a heap expression H would require user annota-
tions. A workaround for the restriction is to assign a heap-
dependent expression in a preceding method call.

In the generated par block, we require € permission to read
the message field f, which means the verifier will pick a
positive fraction smaller than the available permission. Us-
ing € ensures the location can only be read, and not writ-
ten to, which allows the verifier to maintain that f does not
change. The context keyword here is syntactic sugar for a
symmetric requires and ensures clause. Rule CPCOMMRANGE
performs substitution on R; like rule CPCoMM. E.g. in the
precondition of the par block, the notation R;(...) replaces,
in Ry, \msg with F[i] . f, \sender with F[i] and \receiver
with G[d()].

Rule CPEXPRRANGE shows how to project an endpoint
expression with a range. Essentially, \endpoint is replaced
with a universal quantifier, and the inner expression E is
confined to the memory accessible to F[i].

Rule CPMETHODCALLRANGE encodes that a method call
is executed in parallel on a range of an endpoint family. It
does this by projecting the method call confined to a sym-
bolic element of this endpoint family, F[i], and wrapping
that in a PVL par block. Wrapping the method call in a par
block encodes that the methods must run in parallel and in-
dependently. The contract for the par block is taken from
the method using pre(m, F[i]) and post(m, F[i]) to return
the pre-/postcondition of m. They also replace any occur-
rence of this in the return value with the second argu-
ment, in this case F[i]. Note that only method calls directly
on F[i] are allowed, similar to rule CPCOMMRANGE. This
is to keep projection automatic. A workaround for this re-
striction is to compute a heap-dependent expression within
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CPMETHODCALLRANGE
{endpoint F[i := E .. E,]: F[i]l.m();}=
par (int i = E .. Ep)
requires {pre(m, F[i1)}p(;p;
ensures {post(m, F[i])}p[;;
{ {endpoint F[i]: F[i]l.m();] }

CPEXPRRANGE
{(\endpoint F[i := E .. E;]; E)}=
(\forall int i = E .. Ep; {Elpp)

CpCOMMRANGE
channel_invariant R;(\msg,\sender,\receiver); _
communicate F[i := E .. Ep]: F[i].f -> G[d®)]: G[d®)].g;

assert (\forall int i, j = E .. E; d(i) == d(G) ==> i == j);
par (int i = E .. Ej)
context {Perm(F[i].f, €)bppy ** (Perm(GId)]1.g, 1)bgra):
requires {R;(F[i].f, F[il, GLd®)Dbrp;
ensures {R/(G[d(i)]1.g. Flil, GIdDODlsraq;
{Twv={FLl.fhruys
exhale {Ri(v, F[i], GIdW) Dl
inhale {Ri(v, F[il, GLd®)Dbcrac) :
{GLdd1 - ghgracy; = vi ¥

Figure 6.7: Parameterized choreographic projection rules

a method m, and then calling the desired method on the re-
sult within m.

6.3.5 Branch Unanimity

Branch unanimity is defined through the function unanimous(E)
and supporting functions, shown in Fig. 6.8. It evaluates to
true if all endpoints in E evaluate E to the same result. We

split this into two cases: either all ¢; evaluate E to true, or

all evaluate to false. Evaluating the condition for each in-
dividual endpoint occurring in E takes two steps. The first

step is using the confined memory mode, which drops parts

of the expression that are not relevant to the given end-
point. For example:

{(\endpoint a; E;) && (\endpoint b; E;)}, ={El.

The second step is wrapping E, confined to F[i], in a uni-

131
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for all ay,...,a, € E for all ay,...,a, € E

unanimous(E) =I(ground(E, a, true) && - )I | I(ground(E, o, false) && )
ground(E, r, b) ={E}, == b
ground(E, F[i := E .. E,], b)= (\forall int i = E .. Ey; {Ebppy == b)

Figure 6.8: Functions for constructing the branch unanimity condition

1| loop_invariant (\forall int i = 0..N; ns[i].n < N-1 == true) || ...;
2 | loop_invariant (\forall int i = 0..N; ns[i].sum == sum(ns, ns[i].i, ns[i].n));
3 |while ((\forall int i = 0..N; ns[i].n < N-1)) {

4 par (int i = 0..N-1)

5 context Perm(nodes[i-1].sum, €) ** Perm(nodes[i].in, 1);

6 requires ns[i].sum == sum(ns, ns[i].i, ns[i].n);

7 ensures ns[i+1].in == sum(ns, ns[i].i, ns[i].n);

8 { int v = ns[i].sum;

9 exhale ...; inhale ...;

10 ns[i+1].in = v; }

11 int v = ns[N-1].sum; exhale ...; inhale ...; ns[0].in = v;

12 par (int i = 0..N)

13 ensures ns[i].sum = ns[i].in + ns[i].v;

14 { ns[i].update(); }

Figure 6.9: Choreographic projection of core while loop of Fig. 6.3

versal quantifier. This enables reasoning over the entire
endpoint family, even though during verification the size
of endpoint families remains symbolic.

6.3.6 Choreographic Projection of Distributed
Summation

The choreographic projection of Fig. 6.3 is shown in Fig. 6.9.
We focus on the while loop as it contains the core of the al-
gorithm. Each statement is transformed by an application

of the rules CPCOMMRANGE, CPMETHODCALLRANGE

and CPEXPRRANGE. Note that the branch unanimity check
is added as a loop invariant, instead of a separate assert, to

ensure branch unanimity is checked both at loop entry and

exit. The false branch has been ommitted using “. . .”. As

the arguments of the exhale/inhale statements on lines 9

and 11 just repeat the contract of the preceding par block,

they have also been ommitted. For the encoding of the pa-
rameterized method call, on line 13 we inline the contract

of update, resulting in only an ensures clause.
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6.4 Endpoint Projection

We will now discuss the transformation rules for the end-
point projection. It is written as [],, where we refer to r
as the projection target. The purpose of the endpoint pro-
jection is to transform a choreography such that it only
executes parts relevant to the endpoint r. In this process,
all choreographic primitives are replaced with plain PVL
constructs. If this is done for all endpoints r in the chore-
ography, when all endpoint projections are composed in
parallel, the resulting program behaves exactly the same
as the original choreography [80].

For non-parameterized choreographies, the endpoint pro-
jection can be done using a syntactic check [36]. Summariz-
ing, for a given projection target r, simply retain all chore-
ographic statements that mention r. Parameterized chore-
ographies introduce endpoint families, whose sizes will only
be known at runtime. This makes the endpoint projection

challenging: how to determine if the endpoint F[i] falls in

the range 0. .N?

We resolve this by delaying projection of parameterized
primitives until run-time. This is done by wrapping the pro-
jected statements in an if that checks if F[i] is in the rel-
evant range. If so, the statement is executed as if projected
for F[i]; otherwise, it is skipped. This way, the endpoint
projection can safely simulate the program for any possi-
ble endpoint F[i], at the cost of including an extra if.

6.4.1 Non-Parameterized Example

To give an intuition for the endpoint projection, we show
a concrete example. Figure 6.4a is the input choreography,
and Fig. 6.10 shows the output PVL of the endpoint projec-
tion for both a and b. Each communication is transformed
into a concrete channel operation, depending on whether
the projection target is a or b. For the condition of if and
endpoint statements, only those relevant to the current pro-
jection target are kept, while others are replaced by true.

[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs
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Figure 6.10: Endpoint projection
of Fig. 6.4a.

[136]: Rubbens et al. (2025), Ver-
ified Parameterized Choreogra-
phies Technical Report

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[133]: Rubbens et al. (2024), Vey-
Mont: Choreography-Based Gen-
eration of Correct Concurrent Pro-
grams with Shared Memory
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chanl.writevalue(a.balance > a.n); b.ok = chanl.readvalue();

1 1

2 |if (a.balance > a.n && true) { 2 | if (true && b.ok) {

3 chan2.writevalue(a.n); 3 b.n = chan2.readvalue();

4 a.balance = a.balance - a.n; 4 /* skip */

5 /* skip */ 5 b.balance = b.balance + b.n;
613 613

(a) Endpoint projection for a. (b) Endpoint projection for b.

6.4.2 Non-Parameterized Projection Rules

In Fig. 6.11 (top) we summarize the conceptually interest-
ing endpoint projection rules. The full listing can be found
in [136].

Rule EPIF encodes an if statement by keeping it and ap-
plying the endpoint projection to the condition and sub-
statements. For rule EPEXPR, if the endpoint annotation
matches the current projection target, the expression is sim-

ply kept.

Rule EPSEND describes how a communicate, with implicit
name L, should be encoded if singular endpoint a is in the
sending position. Before the endpoint projection is done,
VeyMont generates a channel instance for each communi-
cate statement and assigns it to L. Then, when applying
rule EPSEND, the statement is replaced by a method invo-
cation on a channel: [L],.writevalue(E,,,). Here, [L],
represents the channel instance generated beforehand. The
methods readvalue and writevalue are part of the run-
time environment that VeyMont generates [36, 133].

6.4.3 Parameterized Projection Rules

Parameterized projection rules are shown in Fig. 6.11 (bot-
tom). These have to account for ranges of endpoint families.
This is done by partially delaying the projection until run-
time. For each projected statement or expression we check
if the index of the current projection target is in the range
(or the exact index) specified by the expression or state-
ment. E.g. in rule EPRANGE, the expression E will only
be evaluated if the index of the current projection target
falls in the range of [Ej, Ey). Similarly, rule EPRANGESEND
wraps the call to writevalue in an if statement to en-
sure adherence to the range. Rule EPRANGERECEIVE is
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EpIF ErPEXPR
Hif (H) Strue Sfalse]]r:if ([[H]]r) [[Strue]]r Hsfalse]]r [[(\endp()int €, E)]]e:E

EPSEND
. send
[L: communicate a: Hygy -> b: Hyy;| =~ =

a
[L], writevalue(Hy,) with {
sender = a; receiver = b; };

EPRANGESEND
. . s d
[L: communicate F[j: E .. E,].f -> G[d(j)] .g]];fﬁ] =
if (E <=1 && i < Ep) {
[L]ppip [i] -writevalue(F[i]. f) with {
sender = F[i]; receiver = G[d()]; }; }

EPRANGERECEIVE )
[L: communicate F[j: E .. E,].f -> G[d(j)] .g}]rGeEfave =
if (E <= d71() && d71(i) < E) {
Gli]l.g = [Llgpy[d'(®)].readvalue() with {
sender = F[d'(i)]; receiver = G[i]; }; }

EPRANGE
[(\endpoint F[j := E .. E]; E)|py=E <= i & i < E, ==> E

Figure 6.11: Non-parameterized and parameterized endpoint projection rules

symmetric, in particular the use of d is also inverted as fol-
lows.

We require the function d used to compute the receiver

index to be invertible. This is important, as the index of

the sender determines which channel the receiving party

should read from. We use the notation d~! for the inverse

function, e.g. in EPRANGERECEIVE. The choreographic

projection already guarantees that d is injective (Section 6.3.4).

To actually compute the function d ! in the projection, we

use simple pattern matching to invert each operation in d.

For example, if d(i) = i + 1, then ! = i — 1. This is an

approach inspired by previous work: Ng et al. present Ta-

ble II as a basis for such a transformation [114]. We think  [114]: Ng et al. (2015), Pabble: pa-
this step could be improved by reusing results in the field ~ rameterised Scribble

of bidirectional functions, such as [101]. We leave this for = [101]: Matsuda et al. (2015),

future work. “Bidirectionalization for free” for
monomorphic transformations
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[80]: Jongmans et al. (2022), A
Predicate Transformer for Chore-
ographies - Computing Precondi-
tions in Choreographic Program-
ming

[36]: Van den Bos et al. (2023),
VeyMont: Parallelising Verified
Programs Instead of Verifying Par-
allel Programs

[133]: Rubbens et al. (2024), Vey-
Mont: Choreography-Based Gen-
eration of Correct Concurrent Pro-
grams with Shared Memory

[79]: Jongmans (2025), First-
Person Choreographic Program-
ming with Continuation-Passing
Communications

6.4.4 Example Endpoint Projection

The endpoint projection of Fig. 6.3 is shown in Fig. 6.12.
There are two major differences between the choreography
and its endpoint projection. First, each communication is
split up into write and read statements. This is because in
a parameterized communication, an endpoint can be both
a sender and a receiver. E.g. in the summation choreogra-
phy, line 10 of Fig. 6.3, node i must send to node i + 1, and
receive from node i — 1. This is in contrast to regular non-
parameterized communication, in which case it is statically
known if the projection target is either a sender or a re-
ceiver, meaning less code is generated.

The second difference is that each statement in Fig. 6.12 is
wrapped in an if, ensuring that the action is only executed
if the index of the current endpoint (in this case i) falls in
the range specified by each communicate statement (e.g.
line 3). When a communicate is not parameterized, but in-
volves a parameterized endpoint, such an if is also neces-
sary, e.g. on line 6. Finally, this transformation is applied
similarly to parameterized method calls (line 8).

6.5 Related Work

VeyMont This chapter builds on work around VeyMont.
Jongmans et al. formalised verification of choreographies [80].
Van den Bos et al. first implemented the choreographic and
endpoint projection in VeyMont [36]. Rubbens et al. ex-
tended them with shared memory support and annotation
preservation [133].

Choreographies The following works do not consider chore-
ographic verification, or shared memory, but they do con-
cern parameterization. We expect that our insights can be
applied to the following works, and vice versa.

Jongmans introduces first-person choreographic programming
(1CP), which is a novel formulation of choreographies with
parameterization [79]. It is event-driven and dynamic. They
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1 | loop_invariant @ <= i & i < N ==> ns[i].sum == sum(ns, i, ns[i].n);

2 |while (0 <= i & i < N ==> ns[i].n < N-1)) {

3 if (0 <= i & i < N-1) chani[i].writevalue(ns[i].sum) with { sender = ns[i]; receiver = ns[i + 1]; };
4 if (0 + 1 <= 1 & i < N-1+1) ns[i].in = chani[i - 1].readValue()

5 with { sender = ns[i - 1]; receiver = ns[i]; };

6 if (1 == N - 1) chan2.writevValue(ns[N-1].sum) with { sender = ns[N-1]; receiver = ns[0]; };

7 if (i == 0) ns[0].in = chan2.readvalue() with { sender = ns[N-1]; receiver = ns[0]; };

8 if (0 <= 1 & i < N) ns[i].update(); }

Figure 6.12: Example of endpoint projection of Fig. 6.3

prove deadlock freedom of well-typed choreographies, sup-
port intricate messaging patterns such as pipelined commu-
nication, and provide tool support. They do not provide a
way to verify functional correctness of the choreographies,
nor of the endpoint projections, and also do not support
shared memory. A key difference between their and our
formulation of parameterized choreographies is that they
do not allow indexing into endpoint families. Instead, they
fully describe the network topology before the choreogra-
phy is started, avoiding the need to define indexing of end-
point families in their semantics. We avoid defining the net-
work topology by using verification to ensure injectivity
and bounds checking for indexing operations.

Bates et al. support parameterized choreographies in the

tool MultiChor [18]. This is achieved through census poly-  [18]: Bates et al. (2024), Efficient,
morphism, which essentially parameterizes a choreography ~ Fortable.  Census-Polymorphic
over a set of endpoints by leveraging the Haskell type sys- Choreographic Programming
tem. They fully delay the endpoint projection until run-

time, where we only do this for parameterized parts of a

choreography. While conditions still need to be propagated

between endpoints to maintain deadlock freedom, they em-

ploy enclaves to limit the scope in which conditions need

to be propagated. We use branch unanimity to guarantee

deadlock freedom at verification time. They also do not sup-

port endpoint family indexing directly, but instead fix the

network topology during the initialization phase, similar

to Jongmans [79].

Instead of generating programs from choreographies, Kjeer
etal. infer choreographies from parameterized programs [84]. [84]: Kjeer et al. (2022), From In-
They achieve this by parameterizing procedures with end-  finity to Choreographies - Extrac-
. . tion for Unbounded Systems
point references, such that choreographies can model an
endpoint substituting for another. Cruz-Filipe and Montesi
similarly extend choreographies with procedures and dy-
namic participant allocation, allowing e.g. pipelined com-
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munication [53]. They do not support endpoint family in-
dexing.

Session types Session types [159] are related, yet subtly
different from choreographies. Session types type check
protocol conformance for a given implementation, whereas
choreographies allow generating an implementation. Re-
lated work in parameterization of session types focuses on
the multi-party variant [73, 157], which allows more than
two parties in the session type.

None of the works on parameterized session types we found
support verification of functional correctness and shared
memory [43, 44, 56, 67, 114]. Their support for indexing
into endpoint families is usually restricted to some decid-
able fragment of arithmetic, where we support general re-
cursive functions. We use verification to show that bounds
of endpoint families are respected, and that indexing is in-
jective, guaranteeing that the endpoint projection produces
safe code. Except for Hamers et al [67], they all require

some form of symmetry in the session type to ensure deadlock-

freedom of the projection, whereas we use branch unanim-
ity to guarantee deadlock freedom (Section 6.3.5). The works
on session types do support more communication patterns,

such as many-to-one or pipelined communication. This is

still a challenge for our formulation of choreographies: more
annotations will be required from the user, making this ex-
tension non-trivial.

Hamers et al. [67] do dynamic checking of session types.
This means they do not need a mechanism like branch una-
nimity to avoid deadlocks. In exchange, a session type might
crash because non-compliance is detected at run-time.

Ng et al. [114] introduce the endpoint family notation we
use as well, which is in turn inspired by [98]. Furthermore,
Ng et al. also require that indexing of endpoint families is
an invertible operation. We generalize this requirement: for
the choreographic projection, indexing merely needs to be
injective. This suffices for verification, as VerCors can rea-
son about injectivity. The endpoint projection requires an
invertible expression, as indices need to be computable.


https://doi.org/10.1145/3290342

6.6 Conclusion

We proposed an extension of the automated verifier and
code generator VeyMont for parameterized choreographies,
opening the door for verification of choreographies with an
arbitrary number of participants.

Adding parameterization support required improvements
to several VeyMont components. We first defined the syn-
tax of choreographies with parameterized primitives, such
as endpoint families and parameterized communication. We
then extended the choreographic projection with support
for parameterized choreographies, which leverages the par
block from VerCors. In addition, we restrict the input lan-
guage of the choreographic projection such that verifica-
tion annotations can be automatically generated. We also
showed that deadlock freedom of parameterized choreogra-
phies can be checked by quantification over entire end-
point families using universal quantifiers.

Also, we extended the endpoint projection with support for
endpoint families. The endpoint projection generates one
program that works for each symbolic index of the family.
This is implemented by checking the index at run-time, en-
abling only statements for the specified index.

We have illustrated and motivated our contribution by ver-
ifying a distributed summation choreography, included in
the artifact [139]. To the best of our knowledge, there is
no prior work on verification of parameterized choreogra-
phies.

Future work We will complete the implementation of the
approach presented in this work, and further evaluate the
approach with more case studies. Then, future work will
go in several directions. We will investigate the possibility
of “ghost” communication statements, which allow com-
municating ghost state and proof hints between endpoints
with zero run-time overhead. Another direction is to make
interactions more flexible, for example by allowing heap lo-
cations as indices for parameterized communication state-
ments, and by adding pipelined and many-to-one commu-
nication. Finally, we wish to integrate the branch unanim-
ity check into the endpoint projection. This would allow
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[139]: Rubbens et al. (2025), Arte-
fact of: Verified Parameterized
Choreographies
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modification, reverification and further analysis of dead-
lock freedom of the generated code.



Conclusion

In this thesis, we started with investigating the lack of use
of formal methods in industry. Using the insights gained
from this investigation, we combined formal methods to
acquire new hybrid formal methods that, we believe, nar-
row the gap between mental models and formal verifica-
tion tools. In particular, we have considered the combina-
tions of

» the program verifier VerCors and the software design
framework JavaBIP, and

» deductive verification and choreographies in the chore-
ographic verifier VeyMont.

These contributions were presented in four parts.

Formal methods in Industry One way to improve the re-
liability of software is to use formal methods, which can
show correctness of software exhaustively w.r.t. a specifica-
tion. Despite successes [20], application of formal methods
to industrial projects is still relatively rare [64]. To get bet-
ter insight into why this is, we did a case study where we
applied the auto-active deductive verification tool VerCors
to an industrial software system. During this process we
discovered two concurrency bugs. We conclude that the
level of support for Java in the VerCors tool would still
require improvements to be effective in practice, in par-
ticular in the areas of generics, inheritance, and lambdas.
However, with this support in place, we argue that both
bugs could have been detected with VerCors.

[20]: Ter Beek et al. (2025), For-
mal Methods in Industry

[64]: Gleirscher et al. (2023), A
manifesto for applicable formal
methods
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We communicated these results to an audience that had
no familiarity with formal methods, taking extra care with
preparing the presentation. We did this by introducing for-
mal methods concepts with high granularity, as well as
only focusing on core concepts. The audience reported that
while formal methods look promising, it is hard to allocate
time to write the annotations necessary to apply them. In
addition, the distance between the mental models of devel-
opers and the abstraction level of verification annotations
is currently too large.

Towards Verified Concurrent Systems in Java To reduce
the distance between mental models of developers and ver-
ification annotations required at the level of the code, we
combined two conceptually different formal methods. The
first formal method is a top-down formal method called
JavaBIP, which is a framework for implementing Java sys-
tems based on a high-level specification of components and
their interactions. The second formal method is a bottom-
up formal method called VerCors, which shows correctness
of a Java implementation with regard to a code-level cor-
rectness specification.

Combining these two tools results in a new hybrid formal
method: Verified JavaBIP. This new formal method sup-
ports annotating JavaBIP models with implementation-level
correctness annotations. We implemented support in VerCors
to deductively verify annotated JavaBIP models. In addi-
tion, we extended the JavaBIP engine to check, at run-time,
any annotations that were not verified deductively. We show
that the implemented approach is effective by applying it
to the VerifyThis Long-Term Challenge casino example.

Verified JavaBIP had two particular limitations that we ad-
dressed in the next two parts of this thesis. First, Verified
JavaBIP did not support models that share memory between
components. Second, it was unclear how JavaBIP models
with a dynamic number of components could be verified.

Verified Shared Memory Choreographies We investigate
verification of high-level models with shared memory in
the context of a different hybrid formal method: VeyMont.



VeyMont combines choreographies with program verifica-
tion, and similar to JavaBIP, also lacked shared memory
support.

To add shared memory support to VeyMont, we extended
its choreography language with primitives for expressing
shared memory access patterns. We then described the nec-
essary extensions to two pre-existing choreography trans-
formations. First, we adapt the verification transformation,
called the choreographic projection, to verify memory safety
and functional correctness at the choreographic level. Sec-
ond, we adapt the code generation transformation, called
the endpoint projection, to include memory safety annota-
tions.

Adding shared memory support to choreographies facili-
tates two useful capabilities. First, it is now possible to pre-
serve correctness annotations in the code generated with

the endpoint projection. This allows re-verification of the

generated code, which is beneficial for robustness and main-
tainability. Second, it allows expressing proof steps over

shared ghost state, which makes some proofs easier to ex-
press. We illustrate this new capability with a case study

of several variations of the Tic-Tac-Toe choreography. The

case study illustrates a trade-off between performance and

annotation size.

Verified Parameterized Choreographies We also consider
parameterized choreographies. We define the primitives nec-
essary to parameterize choreographies. In particular, we
extend choreographies with endpoint families, which are
collections of endpoints with size determined by a sym-
bolic parameter, and parameterized communication, which
allows one-to-one communication between endpoint fam-
ilies.

We then adapt the choreographic projection and endpoint
projection to support these parameterization primitives. For
the choreographic projection, we encode endpoint fami-
lies as immutable sequences. Parameterized communica-
tion statements are encoded using the par block, which
is a structured parallelism primitive from VerCors for veri-
fication of a parameterized number of threads. For the end-
point sprojection, we ensure that code is generated that

143
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can execute the choreography for each member of an end-
point family. This behaviour is then conditionally refined
at run-time, based on the run-time index of the target end-
point. To be able to generate all necessary annotations auto-
matically, we impose two limitations. First, parameterized
communications must not depend on heap variables. Sec-
ond, indexing expressions into endpoint families must be
invertible.

We illustrate our approach by defining a distributed sum-
mation algorithm on a ring network using parameterized
choreographies. We verify the algorithm with VerCors us-
ing a manual encoding into PVL.

To conclude, we have reduced the gap between industrial
application and theoretical design of formal methods by:

» Applying a deductive verifier in an industrial setting,
determining current strengths and weaknesses and
documenting feedback from informed practitioners.

» Combining correctness-by-construction with program
verification to create a new hybrid formal method
that allows expressing implementation concerns at
the design level.

» Extending choreographic verification with shared mem-
ory and parameterization, facilitating simpler correct-
ness proofs and enabling verification of generated
code. This makes choreographic verification more gen-
erally applicable and more valuable in practice.

With these contributions, we believe we have significantly
reduced the gap between, on one hand, mental models of
software, and on the other hand, their implementation, which
is essential for encouraging a higher degree of adoption of
formal methods in industry.

7.1 Future Work

We will now discuss several promising directions of future
work.



Javasupport While applying VerCors to an industrial code
base, we ran into issues in the category of missing support
for Java language features. While there is existing work in
this direction, e.g. [48], this has not yet been further refined
into a robust and generally applicable approach for concur-
rent software verification. During our research, we did not
encounter a deductive verifier with adequate support for
Java as written in an industrial context.

Moreover, merely implementing support for advanced lan-
guage futures is not enough. In particular, research is nec-
essary on how verification support for these features inter-
acts with idiomatic Java programming patterns, as well as
with major Java frameworks such as Spring Boot! and Hi-
bernate?. In other words, progress in this research direction
can only be made if there is a clear picture of the properties
that industrial Java developers want to verify.

Annotation pressure The relation between lines of code
and lines of annotation is subject to ongoing research. For
example:

» Lathouwers defines the specification bottleneck, which
occurs when the limiting factor for applying formal
methods is the number of annotations required [91].

» For a particular large-scale verification effort done
by Pereira et al., the ratio of lines of annotations to
lines of code is 2.8 [126].

» Tasche et al. introduce a technique to generate the so-
called RASI, specifically to alleviate the user of hav-
ing to write it. The RASI is a large annotation summa-
rizing the state space the verifier must consider [150].

» Armborst et al. show how to automatically gener-
ate certain verification annotations for VerCors us-
ing CPAChecker [23], also alleviating the user of the
annotation burden [12].

In Chapter 3 of this thesis, we have also found that develop-
ers report there is only a limited amount of time they can
allocate to writing annotations. The developers also report
that they think the approach of Rust with syntax for owner-
ship and lifetimes is promising. We agree, and expect that
concepts popular and effective in Rust, and possibly in the
broader setting of ownership systems, can be transferred to
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the context of deductive verification with separation logic.
This is not a novel insight but instead a topic of on-going
research [14, 127].

Beyond Verified JavaBIP There are two directions that
are interesting to explore in particular for Verified JavaBIP.
The first is runtime verification of memory safety. This can
be done in the context of JavaBIP models, but there is a pos-
sibility a lightweight approach for Java is straightforward
to adapt to JavaBIP. There is already some earlier work [82]
and recent work [77] in this direction.

The second direction is to investigate verifying JavaBIP be-
yond safety properties. In this thesis, we focused on verifi-
cation of invariants of components and component states,
and contracts of component transitions. However, in com-
bination with the foundations of JavaBIP in synchroniz-
ing automatons, integration of temporal logic properties
in Verified JavaBIP should be possible. For example, the en-
coding of LTL as presented by Hawblitzel et al. could be a
suitable starting point for a deductive approach [68]. Alter-
natively, Mediouni et al. have already extended BIP with
statistical model checking. Integrating this with Verified
JavaBIP is a logical next step [103].

Choreographic verification The earlier mentioned chal-
lenge of annotation pressure is also relevant for VeyMont.
Because VeyMont combines the logical contexts for each
endpoint in one notation, the amount of annotations that
must be written in one place also grows linearly in the num-
ber of endpoints. Research could be done on how to exploit
the choreographic view of a system for more concise anno-
tation syntax. For example, perhaps there are symmetries
in the annotations supported by VeyMont that remain to
be utilized.

Another direction of research that would be fruitful is ex-
tending VeyMont with more communication patterns. For
example, generalizing communication in VeyMont to sup-
port one-to-many, many-to-one, and pipelined communi-
cations should be possible. In addition, at the cost of writ-
ing additional annotations, we expect that some form of


https://hdl.handle.net/20.500.12608/70919
http://essay.utwente.nl/98745/

heap-dependent parameterized communication might be
achievable.

Besides improving verification support, it should also be
investigated in which domains VeyMont could be applied.
A notable direction is that of infrastructure as code, which
is a domain where scripts written in YAML notation deter-
mine deployment schemes for internet platforms [11]. An-
other is the application of verified choreographies to high-
performance computing and GPGPU programming, which
are good fits for the choreographic paradigm because of
their semi-distributed® nature. Some progress in this direc-
tion has already been made in the area of session types [96,
113].

Finally, there are also still foundational aspects of VeyMont
that could be further explored. For example, while there is a
semantics for the initial implementation of VeyMont [80],
the extensions presented in this thesis have not yet been
formally described.

Another foundational matter is that the code generated us-
ing the endpoint projection does not encompass all proper-
ties encoded with the choreographic projection. In partic-
ular, deadlock freedom is not included. We think it could
be both theoretically and practically challenging, as well
as enlightening from a foundational perspective, to design
new annotations which the endpoint projection could use
to encode deadlock freedom at the implementation level.
Crucial progress has already been made in this direction by
Bily et al., who introduce various annotations to show live-
ness properties in a deductive setting [24]. These annota-
tions could be a possible primitive to target in an extended
endpoint projection.
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Samenvatting

Software is alomtegenwoordig geworden, zowel in de industrie als daarbuiten. Helaas

zijn er tal van voorbeelden van softwarekwetsbaarheden die het dagelijks leven op grote
schaal ontwrichten, zoals de Heartbleed-kwetsbaarheid in 2014 of de wereldwijde Crowdstrike-
storing in 2024. Daarom is het waarborgen van de correctheid van deze softwaresyste-

men cruciaal.

Dit is echter moeilijk. Alleen al in een geisoleerd proces zijn geheugensveiligheid en
functionele correctheid lastig te verifiéren. Daar komt nog bij dat in een softwareomgev-
ing waarbij processen gelijktijdig worden uitgevoerd, processen door elkaar worden
geweven. Hierdoor worden sommige kwetsbaarheden alleen geactiveerd bij specifieke
doorvlechtingen van processen. Dit maakt het lastiger om handmatig kwetsbaarheden
te vinden, en dus nog moeilijker om correcte software te schrijven.

Een manier om de correctheid van software met gelijktijdige processen te waarborgen
is via formele methoden, die nagaan of programma’s voldoen aan een wiskundige spec-
ificatie. Geautomatiseerde tools die deze technieken implementeren, bieden gebruikers
de mogelijkheid om de correctheid van hun software op ongekende schaal aan te to-
nen. Dit proefschrift richt zich op de auto-actieve deductieve verifieérder VerCors, die
programma’s met gelijktijdige processen verifieért door middel van contracten voor ge-
heugensveiligheid en functionele correctheid.

Hoewel er succesvolle toepassingen zijn geweest van formele methoden op industriéle
systemen, is het gebruik van formele methoden in de praktijk nog steeds beperkt. We
stellen vast dat dit deels komt door een kloof tussen de mentale modellen van ontwikke-
laars en de abstracties die formele methoden bieden. We verbeteren de situatie door
formele methoden te combineren met, en uit te breiden voor, verschillende ontwikkel-
methoden en abstractieniveaus. Deze hybride formele methoden hebben het potentieel
om de kloof tussen praktische softwareontwikkeling en verificatie met formele metho-
den te verkleinen. We verkennen dit thema in drie delen.

Het eerste deel van dit proefschrift onderzoekt de mogelijke redenen voor het uitblijven
van het gebruik van één specifieke formele methode: auto-actieve deductieve verificatie.
We passen de deductieve verifieérder VerCors toe op een industrieél stuurprogramma
van het bedrijf Technolution en vinden twee kwetsbaarheden. We concluderen dat de
software ondersteuning voor formele methoden verder verbeterd moet worden en dat
het moeilijk is om de mentale modellen van ontwikkelaars te verbinden met het abstrac-
tieniveau dat vereist is voor verificatie-annotaties.

In het tweede deel van het proefschrift proberen we de kloof tussen mentale modellen
en formele methoden te verkleinen door twee verificatietools te combineren: VerCors en
het componentgebaseerde ontwikkelraamwerk JavaBIP. De kernfunctie van JavaBIP is



dat het de implementatie van componenten in Java scheidt van de interactie tussen com-
ponenten. We noemen de combinatie van JavaBIP en VerCors Verified JavaBIP, waarmee
implementaties van JavaBIP-modellen worden geverifieerd op geheugensveiligheid en
functionele correctheid. We implementeren ondersteuning voor Verified JavaBIP in de
deductieve verifieérder VerCors, en implementeren ook ondersteuning voor dynamis-
che verificatie in JavaBIP. We illustreren Verified JavaBIP aan de hand van de VerifyThis
Long Term Verification Challenge.

In het derde deel van dit proefschrift behandelen we choreografieén en deductieve veri-
ficatie. Choreografieén zijn notatie voor het beschrijven van protocollen en voor gedis-
tribueerde systemen. In choreografieén hebben berichten altijd het juiste dataformaat
en hoeven deelnemers nooit oneindig op berichten te wachten. Choreografieén onder-
steunen ook het genereren van code die het beschreven systeem of protocol imple-
menteert. Om choreografieén te verifiéren is de tool VeyMont ontworpen, waarmee veri-
ficatie van het gedistribueerde systeem in één gecombineerd overzicht mogelijk is. In dit
proefschrift maken we VeyMont breder toepasbaar door het uit te breiden met gedeeld
geheugen en door het aantal deelnemers te parameteriseren.

Aanvankelijk ondersteunde VeyMont geen gedeeld geheugen. Dit beperkte de expres-
siviteit en maakte bewijsstappen die een gedeelde “schaduw”-toestand vereisen onmo-
gelijk. We maken gebruik van gedeeld geheugen mogelijk door gestratificeerde permissies
toe te voegen aan VeyMont, een nieuw type annotatie dat geheugenannotaties aan deel-
nemers toekent. VeyMont gebruikt gestratificeerde permissies ook om annotaties tijdens
codegeneratie te behouden, zodat de gegenereerde code verifieérbaar is met VerCors.
Dit vergroot de robuustheid en onderhoudbaarheid van de gegenereerde code. We veri-
fiéren een boter-kaas-en-eieren-choreografie op drie niveaus van optimalisatie, wat een
afweging aantoont tussen het volume aan annotaties dat nodig is om de choreografie te
verifiéren en de prestaties als de code wordt uitgevoerd.

We breiden VeyMont choreografieén ook uit met parameterisatie. Voorheen moest de
gebruiker het aantal deelnemers vooraf specificeren. Dit maakte het moeilijk om in
VeyMont gedistribueerde systemen uit te drukken die van nature kunnen groeien. We
breiden VeyMont uit met ondersteuning voor choreografieén met een geparameteriseerd
aantal deelnemers. We leggen bescheiden beperkingen op aan de notatie van chore-
ografieén om automatische verificatie te behouden, en illustreren de uitbreiding door
een choreografie te verifiéren die gedistribueerd sommeert. Dit toont aan dat, ondanks
de opgelegde beperkingen, de voorgestelde ondersteuning voldoende is om interessante
choreografieén te verifiéren.

Samenvattend onderzoekt dit proefschrift de kloof tussen formele methoden en soft-
ware ontwikkeling in de industrie. Dat doen we door een deductieve verifieérder in
een industriéle context toe te passen en vast te stellen wat er ontbreekt aan de huidig
beschikbare techniek. Daarnaast combineren we formele methoden met verschillende
ontwikkelmethoden en abstracties, en breiden we zulke hybride formele methoden uit,
om de kloof tussen formele methoden en softwareontwerp verder te verkleinen. Dit



brengt formele methoden dichter bij de industrie, en zal daarom op de lange termijn
de betrouwbaarheid van softwaresystemen verbeteren.
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